Math 428 Exam

Each problem is worth 25 points.

1. Explain why

$$
\int_{-\pi}^{\pi} e^{-x^{2}} \sin 3 x d x=0
$$

without trying to find an antiderivative (which is impossible).
2. Find all possible positive values of λ that allow non-zero solutions to the boundary value problem

$$
X^{\prime \prime}(x)+\lambda X(x)=0
$$

on $[0, \pi]$ with $X(0)=0$ and $X^{\prime}(\pi)=0$. For each such λ, find a non-zero solution.
3. Given that

$$
1+z+z^{2}+\cdots+z^{N}=\frac{1-z^{N+1}}{1-z}
$$

when z is a complex number unequal to one, find a short closed expression for

$$
1-\sin \theta+\sin 2 \theta-\sin 3 \theta+\cdots+(-1)^{N} \sin N \theta
$$

that does not involve a sum of length N. (Do not try to simplify the expression you get.)
Hints: What happens if you replace z by $-z$? Note that $\sin n \theta$ is the imaginary part of $e^{i n \theta}$.
4. Assume that

$$
S(x)=\sum_{n=1}^{\infty} B_{n} \sin n x
$$

is the sum of the Fourier sine series on $[0, \pi]$ for the function $f(x)$ that is equal to one on the interval $[0, \pi / 2)$ and zero on $[\pi / 2, \pi]$.
a) Write an integral formula for B_{n} and evaluate the integral (but don't simplify it or try to see a pattern).
b) Graph the function that the Fourier sine series converges to on $[-3 \pi, 3 \pi]$, being careful at jumps.
c) Evaluate the sum

$$
\sum_{n=1}^{\infty} B_{n}{ }^{2}
$$

Hint: The Fourier sine series is equal to the full Fourier series of the function you graphed in part (b).

Formulas

Fourier sine series for $f(x)$ on $[0, \pi]$ is $\quad \sum_{n=1}^{\infty} B_{n} \sin n x \quad$ where

$$
B_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin n x d x
$$

Full Fourier series for $f(x)$ on $[-\pi, \pi]$ is $\quad a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) \quad$ where

$$
\begin{aligned}
& a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) d x \\
& a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x \\
& b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x
\end{aligned}
$$

The complex version is $\sum_{n=-\infty}^{\infty} c_{n} e^{i n x}$ where

$$
c_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i n x} d x
$$

Facts: $c_{0}=a_{0}$, and if $n \geq 1: \quad c_{n}=\frac{a_{n}-i b_{n}}{2}$ and $c_{-n}=\frac{a_{n}+i b_{n}}{2}$

Bessel's inequalities

$$
\begin{gathered}
2 a_{0}^{2}+\sum_{n=1}^{\infty}\left({a_{n}}^{2}+{b_{n}}^{2}\right) \leq \frac{1}{\pi} \int_{-\pi}^{\pi}|f(x)|^{2} d x \\
\sum_{n=-\infty}^{\infty}\left|c_{n}\right|^{2} \leq \frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(x)|^{2} d x
\end{gathered}
$$

