Math 428 Exam 1

Each problem is worth 25 points.

1. Find a trig identity expressing $\sin 3 \theta$ in terms of $\sin \theta$ and $\cos \theta$ by using DeMoivre's formula and the Euler identity $e^{i \theta}=\cos \theta+i \sin \theta$.
2. Suppose that $f(x)$ is a continuous function on $[-\pi, \pi]$.
a) What are trigonometric polynomials?
b) Explain why, given $\epsilon>0$, there is a constant A and a trig polynomial $P(x)$ such that

$$
|f(x)-A x-P(x)|<\epsilon \quad \text { on }[-\pi, \pi] .
$$

Reminder: Trig polys are 2π-periodic.
3. Suppose $L>0$. Find all positive values of λ such that there exist non-zero solutions to the boundary value problem

$$
X^{\prime \prime}(x)+\lambda X(x)=0
$$

on $[0, L]$ with $X(0)=0$ and $X^{\prime}(L)=0$. For each such λ, find a non-zero solution.
4. Explain why

$$
\int_{-\pi}^{\pi} \frac{\cos N t}{\sin (t / 2)}\left((x-t)^{2}-x^{2}\right) d t
$$

tends to zero as $N \rightarrow \infty$ for any fixed value of x.

Important Formulas

Fourier sine series for $f(x)$ on $[0, \pi]$ is $\sum_{n=1}^{\infty} B_{n} \sin n x \quad$ where

$$
B_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin n x d x
$$

Full Fourier series for $f(x)$ on $[-\pi, \pi]$ is $\quad a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) \quad$ where

$$
\begin{aligned}
& a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) d x \\
& a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x \\
& b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x
\end{aligned}
$$

The complex version is $\sum_{n=-\infty}^{\infty} c_{n} e^{i n x}$ where

$$
c_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i n x} d x
$$

Facts: $c_{0}=a_{0}$, and if $n \geq 1: \quad c_{n}=\frac{a_{n}-i b_{n}}{2}$ and $c_{-n}=\frac{a_{n}+i b_{n}}{2}$

Bessel's inequalities (Parseval's identities with equality)

$$
\begin{gathered}
2 a_{0}^{2}+\sum_{n=1}^{\infty}\left({a_{n}}^{2}+{b_{n}}^{2}\right) \leq \frac{1}{\pi} \int_{-\pi}^{\pi}|f(x)|^{2} d x \\
\sum_{n=-\infty}^{\infty}\left|c_{n}\right|^{2} \leq \frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(x)|^{2} d x
\end{gathered}
$$

