Math 428 Exam 1

Each problem is worth 25 points.

- 1. Find a trig identity expressing $\sin 3\theta$ in terms of $\sin \theta$ and $\cos \theta$ by using DeMoivre's formula and the Euler identity $e^{i\theta} = \cos \theta + i \sin \theta$.
- **2.** Suppose that f(x) is a continuous function on $[-\pi, \pi]$.
 - a) What are trigonometric polynomials?
 - b) Explain why, given $\epsilon > 0$, there is a constant A and a trig polynomial P(x) such that

$$|f(x) - Ax - P(x)| < \epsilon \quad \text{on } [-\pi, \pi].$$

Reminder: Trig polys are 2π -periodic.

3. Suppose L > 0. Find all *positive* values of λ such that there exist non-zero solutions to the boundary value problem

$$X''(x) + \lambda X(x) = 0$$

on [0, L] with X(0) = 0 and X'(L) = 0. For each such λ , find a non-zero solution.

4. Explain why

$$\int_{-\pi}^{\pi} \frac{\cos Nt}{\sin(t/2)} \left((x-t)^2 - x^2 \right) dt$$

tends to zero as $N \to \infty$ for any fixed value of x.

Formula sheet, OVER

Important Formulas

Fourier sine series for f(x) on $[0, \pi]$ is $\sum_{n=1}^{\infty} B_n \sin nx$ where $B_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx \, dx$

Full Fourier series for f(x) on $[-\pi, \pi]$ is $a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$ where $a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx$ $a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx$ $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx$

The complex version is
$$\sum_{n=-\infty}^{\infty} c_n e^{inx}$$
 where
 $c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-inx} dx$

Facts: $c_0 = a_0$, and if $n \ge 1$: $c_n = \frac{a_n - ib_n}{2}$ and $c_{-n} = \frac{a_n + ib_n}{2}$

Bessel's inequalities (Parseval's identities with equality)

$$2a_0^2 + \sum_{n=1}^{\infty} (a_n^2 + b_n^2) \le \frac{1}{\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx$$
$$\sum_{n=-\infty}^{\infty} |c_n|^2 \le \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx$$