Math 428 Exam 1

Each problem is worth 25 points.

1. Find the real Fourier series for the function $f(x)$ that is equal to zero on $[-\pi, 0)$ and equal to one on $(0, \pi]$. Use Pareseval's identity for the Fourier series you get to verify the value of a famous infinite sum.
2. Given a piecewise C^{1}-smooth real valued function $g(x)$ on $[-\pi, \pi]$, what real value of the constant A makes

$$
\int_{-\pi}^{\pi}|g(x)-A|^{2} d x
$$

as small as possible. Explain.
3. Find all positive values of λ such that there exist non-zero solutions to the boundary value problem

$$
X^{\prime \prime}(x)+\lambda X(x)=0
$$

on $[0, \pi]$ with $X^{\prime}(0)=0$ and $X^{\prime}(\pi)=0$. For each such λ, write down a non-zero solution.
4. Find a closed expression for the sum

$$
1-\cos \theta+\cos 2 \theta-\cos 3 \theta+\cdots+(-1)^{N} \cos N \theta
$$

that does not have lengthy sums and contains real functions and numbers only. Hint: Replace z by $-z$ in the famous identity

$$
1+z+z^{2}+\cdots+z^{N}=\frac{1-z^{N+1}}{1-z}
$$

and use Euler's and DeMoivre's formulas. (No need to use trig identities to try to simplify answer.)

