1. Suppose

$$
f(x)= \begin{cases}0 & x \leq 1 \\ x-1 & 1<x \leq 2 \\ 3-x & 2<x \leq 3 \\ 0 & 3 \leq x\end{cases}
$$

Solve the heat problem,

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}
$$

for $x \geq 0$ and $t \geq 0$, with $u(x, 0)=f(x)$, and $u(0, t)=0$ for all $t \geq 0$.
You may leave your answer in the form of an integral of explicit functions (but not an integral of an integral).
2. Suppose that f is continuous on \mathbb{R}. Show that f and its Fourier transform $\hat{f}(s)=$ $\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(x) e^{-i s x} d x$ cannot both be compactly supported unless $f \equiv 0$.
Facts: The support of f is the closure of the set $\{x: f(x) \neq 0\}$. Hence, if the support of f is compact, i.e., closed and bounded, then f is zero outside $(-B, B)$ for some $B>0$.
Hints: If f is supported in $[-\pi / 2, \pi / 2]$ and $\hat{f}(s)=0$ for $|s|>N$, expand f in a Fourier series in the interval $[-\pi, \pi]$ and show that f must be a trigonometric polynomial of degree less than or equal to N. Can a trig poly be zero on an open interval? (Hint: power series centered at a point in the open interval.)
Now solve the general problem by using some L in place of π and following similar ideas.
3. Find a solution $u(x, t)$ to the following vibrating infinite string problem using D'Alembert's method.

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}} \quad-\infty<x<\infty, t>0
$$

with $u(x, 0)=e^{-x^{2}} \quad$ and $\quad \frac{\partial u}{\partial t}(x, 0)=0$ for $-\infty<x<\infty$.
4. Suppose that u is continuous on the closed unit disc $\overline{D_{1}(0)}$ in the complex plane and that

$$
\begin{equation*}
u(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(z+(1-|z|) e^{i \theta}\right) d \theta \tag{*}
\end{equation*}
$$

for each $z \in D_{1}(0)$. (This equality means that u is only known to satisfy the averaging property on internally tangent circles centered at z like the one pictured below.) Prove that u must be harmonic in $D_{1}(0)$.

