Math 428

Review problems Formula sheet on last page

1. Use D'Alembert's method to solve the wave equation

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$

for the *infinite* vibrating string problem with initial position $u(x, 0) = e^{-x^2}$ and zero initial velocity. The solution has one "hump" at time zero. Is that true of the solution for all time?

- 2. Find the complex Fourier transform and the Fourier cosine transform of e^{-4x^2} .
- **3.** Explain how to turn e^{-x^4} into a "bump function."
- 4. Every function on $[-\pi,\pi]$ can be written as the sum of an even function and an odd function via

$$f(x) = \frac{f(x) + f(-x)}{2} + \frac{f(x) - f(-x)}{2}.$$

Is this decomposition unique? How are the Fourier series for the three functions related?

5. The Legendre polynomials

$$p_n(x) = \frac{d^n}{dx^n} (1 - x^2)^n$$

are orthogonal on [-1, 1]. Let

$$A_n = \int_{-1}^1 p_n^2 \, dx.$$

To expand a function f in terms of Legendre polynomials, $f = \sum_{n=0}^{\infty} c_n p_n$, what must the coefficients c_n be? What is Bessel's inequality in this context? It can be shown that the linear span of the Legendre polynomials of degree N or less is equal to the vector space of polynomials of degree N or less. Explain why this implies that Bessel's inequality must be an equality when f is assumed to be continuous.

6. Solve
$$\frac{\partial^2 u}{\partial x \partial y} = 0$$
.
7. Let $f(x) = \begin{cases} 1 & 0 < x < \pi/2 \\ 2 & \pi/2 < x < \pi \end{cases}$, and let $a_0 + \sum_{n=1}^{\infty} a_n \cos nx$ be its Fourier cosine series for f on $[0, \pi]$. Then $a_0 + \sum_{n=1}^{\infty} a_n \cos n\pi/2 =$

- 8. Compute the coefficients a_n in problem 1. (Don't bother to simplify the formulas you get.)
- **9.** If the Fourier sine Series of $f(x) = x^2$ on $0 < x < \pi$ is $\sum_{n=1}^{\infty} b_n \sin nx$, then the sum of the infinite series $\sum_{n=1}^{\infty} b_n^2 = b_$

10. Suppose $f(x) = 1 + \cos x + \sum_{n=1}^{\infty} \frac{1}{n^2} \sin nx$ $(-\pi < x < \pi)$. Compute $\int_{-\pi}^{\pi} f(x) \cos 3x \, dx$ and $\int_{-\pi}^{\pi} f(x) \sin 3x \, dx$. Is f continuous? Why or why not?

11. Compute the Fourier transform of the odd extension of f to \mathbb{R} if $f(x) = \begin{cases} x & 0 < x < \pi \\ 0 & x > \pi. \end{cases}$

12. Compute the Fourier transform of the even function $f(x) = \begin{cases} 1 & -2 < x < 2 \\ 0 & \text{elsewhere.} \end{cases}$

What is the Fourier transform of the Fourier transform of f? (Be careful to give the value of the function for *every* real number.)

13. Suppose that $u(r,\theta)$ is the harmonic function (that is, $\Delta u = 0$), given in polar coordinates in the unit disk r < 1 having boundary function

 $u(1,\theta) = \sin 2\theta + \cos 2\theta.$ Then, $u\left(\frac{1}{2}, \frac{\pi}{2}\right) =$

Hint: Recall that the functions $r^n \sin n\theta$ and $r^n \cos n\theta$, being the real and imaginary parts of z^n , are harmonic on the unit disc.

14. Given that $f(x) = \frac{2}{\pi} \int_0^\infty \frac{\cos sx}{1+s^2} ds$, what is the Fourier Transform of f(x)? Explain.

Hint: Inverse Fourier Transform.

 $\mathbf{2}$

15. Let $g(x) = \sin 3\pi x$. If u(x,t) is the solution to the problem $a^2 x$.

$$\begin{aligned} \frac{\partial^2 u}{\partial t^2} &= 4 \frac{\partial^2 u}{\partial x^2} \quad 0 < x < 2, \ t > 0 \\ u(x,0) &= g(x) \quad 0 < x < 2 \\ \frac{\partial u}{\partial t} (x,0) &= 0 \quad 0 < x < 2 \\ u(0,t) &= u(2,t) = 0 \quad 0 \le t, \end{aligned}$$

then $u(\frac{1}{2},\frac{1}{12}) =$

Hint: Use D'Alembert's solution $u(x,t) = \phi(x-ct) + \psi(x+ct)$

Formulas

Fourier sine series for f(x) on $[0, \pi]$ is $\sum_{n=1}^{\infty} B_n \sin nx$ where $B_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx \, dx$

Full Fourier series for f(x) on $[-\pi, \pi]$ is $a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$ where $a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx$ $a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx$ $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx$

The complex version is $\sum_{n=-\infty}^{\infty} c_n e^{inx}$ where $c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-inx} dx$ Facts: $c_0 = a_0$, and if $n \ge 1$: $c_n = \frac{a_n - ib_n}{2}$ and $c_{-n} = \frac{a_n + ib_n}{2}$

Parseval's identities (Bessel's inequality with \leq in place of =)

$$2a_0^2 + \sum_{n=1}^{\infty} (a_n^2 + b_n^2) = \frac{1}{\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx \quad \text{and} \quad \sum_{n=-\infty}^{\infty} |c_n|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx$$

Fourier transform of f is $\hat{f}(s) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(x) e^{-isx} dx$

Inverse Fourier transform of g is $\check{g}(x) = \int_{-\infty}^{\infty} g(s) e^{isx} ds$

Fourier cosine transform of f is $(\mathcal{F}_c f)(s) = \sqrt{\frac{2}{\pi}} \int_0^\infty f(x) \cos(sx) dx$

Fourier sine transform of f is $(\mathcal{F}_s f)(s) = \sqrt{\frac{2}{\pi}} \int_0^\infty f(x) \sin(sx) dx$

The Plancherel formula is $\int_{-\infty}^{\infty} |f(x)|^2 dx = 2\pi \int_{-\infty}^{\infty} |\hat{f}(s)|^2 ds$