MA 528 PRACTICE PROBLEMS

1. Find the directional derivative of $f(x,y) = 5 - 4x^2 - 3y$ at (x,y) towards the origin

a.
$$-8x-3$$
 b. $\frac{-8x^2-3y}{\sqrt{x^2+y^2}}$ c. $\frac{-8x-3}{\sqrt{64x^2+9}}$ d. $8x^2+3y$ e. $\frac{8x^2+3y}{\sqrt{x^2+y^2}}$

- 2. Find a vector pointing in the direction in which $f(x, y, z) = 3xy 9xz^2 + y$ increases most rapidly at the point (1, 1, 0).
 - a. $3\mathbf{i} + 4\mathbf{j}$ b. $\mathbf{i} + \mathbf{j}$ c. $4\mathbf{i} 3\mathbf{j}$ d. $2\mathbf{i} + \mathbf{k}$ e. $-\mathbf{i} + \mathbf{j}$.
- 3. Find a vector that is normal to the graph of the equation $2\cos(\pi xy) = 1$ at the point $(\frac{1}{6}, 2)$.

a.
$$6\mathbf{i} + \mathbf{j}$$
 b. $-\sqrt{3}\mathbf{i} - \mathbf{j}$ c. $12\mathbf{i} + \mathbf{j}$ d. \mathbf{j} e. $12\mathbf{i} - \mathbf{j}$

- 4. Find an equation of the tangent plane to the surface $x^2 + 2y^2 + 3z^2 = 6$ at the point (1, 1, -1).
 - a. -x + 2y + 3z = 2b. 2x + 4y - 6z = 6c. x - 2y + 3z = -4d. 2x + 4y - 6z = 6e. x + 2y - 3z = 6.
- 5. Find an equation of the plane tangent to the graph of $z = \pi + \sin(\pi x^2 + 2y)$ when $(x, y) = (2, \pi)$.
 - a. $4\pi x + 2y z = 9\pi$ b. $4x + 2\pi y - z = 10\pi$ c. $4\pi x + 2\pi y + z = 10\pi$ d. $4x + 2\pi y - z = 9\pi$ e. $4\pi x + 2y + z = 9\pi$.
- 6. Are the following statements true or false?
 - 1. The line integral $\int_C (x^3 + 2xy) dx + (x^2 y^2) dy$ is independent of path in the xy-plane.
 - 2. $\int_C (x^3 + 2xy) dx + (x^2 y^2) dy = 0$ for every closed oriented curve C in the xy-plane.
 - 3. There is a function f(x, y) defined in the *xy*-plane, such that grad $f(x, y) = (x^3 + 2xy)\mathbf{i} + (x^2 - y^2)\mathbf{j}$.
 - a. all three are falseb. 1 and 2 are false, 3 is truec. 1 and 2 are true, 3 is falsed. 1 is true, 2 and 3 are falsee. all three are true

- 7. Evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$, if $\mathbf{F}(x, y) = (xy^2 1)\mathbf{i} + (x^2y x)\mathbf{j}$ and C is the circle of radius 1 centered at (1, 2) and oriented counterclockwise.
 - a. 2 b. π c. 0 d. $-\pi$ e. -2
- 8. If S is the part of the paraboloid $z = x^2 + y^2$ with $z \le 4$, **n** is the unit normal vector on S directed upward, and $\mathbf{F}(x, y, z) = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$, then $\iint_S \mathbf{F} \cdot \mathbf{n} \, dA =$
 - a. 0 b. 8π c. 4π d. -4π e. -8π

- 9. Use Green's theorem to evaluate $\int_C \cos x \cos y dx + (2x \sin x \sin y) dy$ where C is the circle $x^2 + y^2 = 9$ oriented counterclockwise.
 - a. 0 b. 18 c. 18π d. 15π e. 16π
- 10. Let S be the cone $z = \sqrt{x^2 + y^2}$, $0 \le z \le 3$, and $\mathbf{F} = -y\mathbf{i} + x\mathbf{j} xyz\mathbf{k}$. If **n** is the upward unit normal on S, $\iint_{S}(\operatorname{curl} \mathbf{F}) \cdot \mathbf{n} dA =$
 - a. 0 b. -18π c. 18π d. $9\pi/\sqrt{2}$ e. $18\pi/\sqrt{2}$
- 11. Consider the following statements, where z and w are complex numbers, $w \neq 0$.

1.
$$z + w = \overline{z} + \overline{w}$$

2. $|z| = |\overline{z}|$
3. $|zw| = |z||w|$
4. $|z + w| = |z| + |w|$
5. $\frac{z}{w} = \frac{z\overline{w}}{|w|^2}$

Which of these statements is true for all possible values of z and $w \neq 0$?

- a. 1, 2, and 3 only
- b. 1, 2, 3, and 5 only
- c. 1, 3, and 4 only
- d. 2, 3, and 5 only
- e. all of the statements

12. Evaluate $\int_C \frac{e^{2(z-2)} \cos \pi z}{z-2} dz$, where C is the circle with center *i* and radius 4.

- a. 0 b. 1 c. $2\pi i$ d. e^{-4} e. $2\pi i e^{-4}$
- 13. Suppose that f is analytic and nonzero in the unit disk, |z| < 1 and that $\operatorname{Re}(f(z)) > 1$ for all z in the unit disk. Consider the following functions.
 - 1. $f^2(z)$
 - 2. $\overline{f(z)}$
 - 3. 1/f(z)
 - 4. $\operatorname{Log}(f(z))$
 - 5. |f(z)|

Which of the following choices best describes which of these functions are analytic in the unit disk?

- a. 1 and 3 only
- b. 1, 3, 5 only
- c. 1, 2, 3, only
- d. 1, 3, 4, 5 only
- e. Some other combination not listed above.
- 14. Suppose $u(x,y) = x^2 y^2$ is the real part of an analytic function, f. Which of the following functions could be the imaginary part of f?
 - (a) $x^2 + y^2$
 - (b) 2xy + 2x
 - (c) 2x 2y
 - (d) 2xy
 - (e) None of the above.

15. Evaluate $\int_C \overline{z} dz$, where C is the upper half of the unit circle, traversed counterclockwise.

- (a) 0
- (b) π
- (c) -2i
- (d) -2
- (e) πi

16. Evaluate $\int_C (\sin(z^2)/(z-5)^2) dz$, where C is the circle |z-i| = 10, traversed once counterclockwise.

- (a) 0
- (b) $\cos 25$
- (c) $2\pi i \cos 25$
- (d) $20\pi i \cos 25$
- (e) None of the above.

- 17. Evaluate $\int_C (1/z^2) dz$, where C is the line from 1 to 1 + 5i followed by the line from 1 + 5i to -1 + 5i followed by the line from -1 + 5i to -1.
 - (a) 0
 - (b) 2
 - (c) -2
 - (d) πi
 - (e) None of the above.
- 18. Which of the following integrals is not equal to zero ?

a)
$$\int_{|z|=10} ze^{e^z} dz$$

b) $\int_{|z-2|=\frac{1}{5}} (z-2)e^{1/z^2} dz$
c) $\int_{|z|=1} \frac{\cos z}{z^2} dz$
d) $\int_{|z|=1} \frac{\cos z}{z} dz$
e) $\int_{|z-1|=1} \frac{1}{(z-1)^3} dz$

19. Which of the numbers below is the value of $\int_{-\infty}^{\infty} \frac{1}{(x^2+1)^3} dx$?

- a) 0
- b) $3\pi/4$
- c) $3\pi/8$
- d) $-3\pi/8$
- e) $3\pi/4$

20. Which of the numbers below is the value of $\int_{-\infty}^{\infty} \frac{x \sin x}{(x^2+1)(x^2+4)} dx$?

- a) 0
- b) $3\pi(e^2 1)$ c) $\frac{\pi}{3}(1 - 1/e)$ d) $\frac{\pi}{3e^2}(1 - 1/e)$ e) $\frac{\pi}{3e^2}(e - 1)$
- 21. Suppose f has an isolated singularity at z = 0 and $\lim_{z\to 0} z^3 f(z) = 0$. Which of the following statements **cannot** be true ?
 - a) f has a removable singularity at 0.
 - b) f is analytic at 0 and has a zero of order 2.
 - c) f has an essential singularity at 0.
 - d) f has a pole of order 2 at 0.
 - e) f has a pole of order 1 at 0.

22. Let $f(z) = z^2 e^{1/z}$ and $g(z) = z^{-2} e^z$. Which of the following statements is true?

- a) Both f and g have a removable singularity at ∞ .
- b) Both f and g have an essential singularity at ∞ .
- c) Both f and g have a pole at ∞ .
- d) f has a pole at ∞ and g has an essential singularity at ∞ .
- e) f has an essential singularity at ∞ and g has a pole at ∞ .

23. The radius of convergence of the power series $\sum_{n=1}^{\infty} \sin(ni) z^n$ is

- a) 1/eb) $2/(\pi e)$
- c) π/e
- d) $+\infty$
- e) *e*

24. Let $f(z) = \sum_{n=-\infty}^{-1} z^n + \sum_{n=0}^{\infty} (\frac{z}{2})^n$. Then f converges precisely in which of the following regions. a) |z| > 2b) $|z| < \frac{1}{2}$ c) 1 < |z| < 2d) $\frac{1}{2} < |z| < 1$ e) 0 < |z| < 2

25. Let $f(z) = \frac{e^z}{z^3 - z^2}$. Then the sum of the residues of f at its poles is equal to a) 0 b) e - 2c) e + 2d) $(2e - 4)\pi i$ e) $(2e + 4)\pi i$

26. Let $f(z) = \sin z$. Then the image under f of a horizontal line z = t + ic, $(c > 0, 0 \le t \le 2\pi)$ is

- a) an ellipse
- b) a circle
- c) a line
- d) a hyperbola
- e) a parabola

27. If T(z) is the linear fractional transformation such that T(i) = 0, T(1) = 1, $T(-1) = \infty$, then T(-i) = 0

- a) 2/(1-i)b) 2i/(1-i)c) (1-i)d) 2
- e) *i*

28. If $\mathbf{V} = x\mathbf{i} - y\mathbf{j}$ is the velocity field of an ideal fluid, then a complex potential is

a) z b) \overline{z} c) $z^2/2$ d) $\overline{z}^2/2$ e) |z|