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Practice problems

3. (30 pts.) Find a one-to-one conformal mapping from the region
{z:Re z >0} — (0,1] onto the unit disc.
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4. (30 pts.) Suppose that f,(2) is a sequence of functions that are continuous on

Dy(0), analytic on D (0), and such that fn% |fu(e®)|d < 1 for all n. Prove that

there is a subsequence that converges uniformly on compact subsets of Dy (0).
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5. (40 pts.) Suppose ai,az,...,ayn are distinct non-zero complex numbers and let )
denote the domain obtained from C by removing each of the closed line segments
joining a; to the origin, k = 1,..., N. Prove that there is an analytic function f
on 2 such that

f()N = H(z — ag).
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6. (40 pts.)  Suppose that f(z) is an analytic functions with a zero of order N
at zg. Prove that there exist ¢ > 0 and 6 > 0 such that, for every w € C with
0 < |w| < €, the equation f(z) = w has exactly N distinct roots in Dg(zg).
Hint: Rouché’s Theorem.
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7. Prove that In |z| does not have a harmonic conjugate on {2:1<
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