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4. How many zeroes does the polynomial

2199 4 2 4+ 2001 = {(2)
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have in the first quadrant? Explain your answer.
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5. Suppose that f is a non-vanishing analytic function on the complex plane
minus the origin. Let v denote the curve given by z(t) = e'* where 0 <t <

27. Suppose that
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is divisible by 3. Prove that f has an analytic cube root on C — {0}.
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6. Suppose that {a;}¥_, is a finite sequence of distinct complex numbers and
that f is analytic on C — {ay : £k = 1,2,...,N}. Prove that there exist
constants ¢j, j = 1,2,..., N, such that
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= Z — Qg
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has an analytic antiderivative on C — {ax : k =1,2,...,N}.
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7. Suppose ai,as,...,ay are distinct nonzero complex numbers and let (2

denote the domain obtained from C by removing each of the closed line
, N. Prove that there is an
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segments joining aj to the origin, k = 1,
analytic function f on €2 such that
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