Math 530
Practice problems for Exam 1

1. What is the radius of convergence of the power series centered at zero for the function \(\frac{1}{(z - 1 - i)^{10}} \)?

2. Prove that power series can be integrated term by term. To be precise, suppose that a power series \(\sum_{n=0}^{\infty} a_n z^n \) with radius of convergence \(R > 0 \) converges on the disc \(D_R(0) \) to an analytic function \(f(z) \). Prove that the power series \(\sum_{n=0}^{\infty} a_n \frac{1}{n+1} z^{n+1} \) also has radius of convergence \(R \) and that this series converges to an analytic anti-derivative of \(f(z) \) inside the circle of convergence.

3. Suppose that \(f \) and \(g \) are analytic in a neighborhood of \(a \). If \(f \) has a simple zero at \(a \), then
 \[
 \text{Res}_{a} \frac{g}{f} = \frac{g(a)}{f'(a)}.
 \]
 Prove a similar formula in case \(f \) has a double zero at \(a \), i.e., in case \(f \) is such that \(f(a) = 0, f'(a) = 0, \) but \(f''(a) \neq 0 \).

4. Consider the closed path which starts at the origin, follows the real axis to \(R > 0 \), then follows the circle \(Re^{i\theta} \) as \(\theta \) ranges from zero to \(2\pi/3 \), then follows the line segment joining \(Re^{i2\pi/3} \) to the origin back to the origin. By letting \(R \to \infty \), use this path to calculate
 \[
 \int_{0}^{\infty} \frac{1}{1 + x^3} \, dx.
 \]
 Hint: Show that the integral over the circular part of the curve tends to zero.

5. Give a detailed statement and proof of the Schwarz Lemma.

6. Show that if \(f \) is an analytic mapping of the unit disk into itself such that \(f(a) = 0 \), then
 \[
 |f(z)| \leq \left| \frac{z - a}{1 - az} \right|
 \]
 for all \(z \) in the disk.

7. Show that if \(f \) is an analytic mapping of the unit disk into itself, then \(|f'(0)| \leq 1 \).

8. Suppose that \(f \) is an analytic function on the unit disc such that \(|f(z)| < 1 \) for \(|z| < 1 \). Prove that if \(f \) has a zero of order \(n \) at the origin, then \(|f(z)| \leq |z|^n \) for \(|z| < 1 \). How big can \(|f^{(n)}(0)| \) be?

9. Suppose that \(f \) is an entire function that satisfies an estimate \(|f(z)| \leq C(1 + |z|^N) \) for all \(z \) where \(C \) is a positive constant and \(N \) is a positive integer. Prove that \(f \) must be a polynomial of degree \(N \) or less.

10. Prove that if \(h_1 \) and \(h_2 \) are two analytic functions on a domain \(\Omega \) such that \(h_1^N \equiv h_2^N \) for some positive integer \(N \), then there is an \(N \)-th root of unity \(\lambda \) such that \(h_1 = \lambda h_2 \) on \(\Omega \).