INTEGRATION. V2.0

1. One-liners

Problem 1. True of false: If f is a non-negative function defined on \mathbb{R} and $\int_{\mathbb{R}} f \, dx < \infty$, then $\lim_{|x|\to\infty} f(x) = 0$.

Problem 2. Let $f, f_n \in L(\mathbb{R}), n \in \mathbb{N}$ and suppose that

$$\int_{\mathbb{R}} |f_n(x) - f(x)| \, dx \le n^{-2}, \text{ for all } n.$$

Prove that $f_n \to f$ a.e.

Problem 3. Let (X, \mathcal{F}, μ) be a measure space and $f \in L(\mu)$. Show that the set $\{f \neq 0\}$ is σ -finite.

Problem 4. Prove the following Chebychev-like inequality: If I = [0, 1] and $f \in L(I)$ is non-negative and has integral 1, then

$$\int_{\{f > \eta\}} f(x) \, dx \ge 1 - \eta, \text{ all } 0 < \eta < 1.$$

Problem 5. Prove the following variant of Fatou's Lemma: If $\{f_n\}$ is a sequence of non-negative measurable functions which converges to f a.e. and $\int_X f_n d\mu \leq M < \infty$ for all n, then f is integrable and $\int_X f d\mu \leq M$.

Problem 6. Let (X, \mathcal{F}, μ) be a measure space and $\{f_n\}$ be a nonincreasing sequence of non-negative measurable functions which converges to f. Show that $\lim_n \int_X f_n d\mu = \int_X f_n d\mu$ provided that $f_1 \in L(\mu)$ and that the conclusion may fail if $f_1 \notin L(\mu)$.

Problem 7. Let (X, \mathcal{F}, μ) be a finite measure space and $\{f_n\}$ a sequence of integrable functions that converges to a function f uniformly on X. Show that f is also integrable and that $\lim_n \int_X f_n d\mu = \int_X f d\mu$. Is a similar result true if $\mu(X) = \infty$?

Problem 8. Let (X, \mathcal{F}, μ) be a measure space and $\{f_n\}$ a sequence of measurable functions that converges to f a.e. If $f \in L(\mu)$, show that $\lim_n \int_X |f_n| d\mu = \int_X |f| d\mu$ implies $\lim_n \int_X |f_n - f| d\mu = 0$ and that the conclusion may fail if f is not integrable.

INTEGRATION. V2.0

2. Advanced Problems

Problem 9. Let f be a non-negative measurable function defined on \mathbb{R} . Prove that if $\sum_{n=-\infty}^{\infty} f(x+n)$ is integrable, then f = 0 a.e.

Problem 10. Suppose f is integrable on \mathbb{R}^n and for a fixed $h \in \mathbb{R}^n$ let g(x) = f(x+h) be a translate of f. Show that g is also integrable and that $\int_{\mathbb{R}^n} g \, dx = \int_{\mathbb{R}^n} f \, dx$.

Problem 11. Let (X, \mathcal{F}, μ) be a finite measure space, and f a nonnegative real-valued function defined on X. Prove that a necessary and sufficient condition that $\lim_n \int_X f^n d\mu$ should exist as a finite number is that $\mu\{f > 1\} = 0$.

Problem 12. Let $r_1, r_2, \ldots, r_n, \ldots$ be an enumeration of the rational numbers in I = [0, 1], and let $f(x) = \sum_{\{n:x>r_n\}} 2^{-n}$. Compute $\int_I f(x) dx$.

Problem 13. Prove that the sum $\sum_{n=0}^{\infty} \int_{0}^{\pi/2} (1 - \sqrt{\sin x})^n \cos x \, dx$ converges to a finite limit, and find its value.

Problem 14. Let (X, \mathcal{F}, μ) be a measure space and $\{f_n\}$ a sequence of measurable functions such that $\sum_{n=1}^{\infty} \int_X |f_n| d\mu < \infty$. Show that $\sum_{n=1}^{\infty} f_n$ converges absolutely a.e. and $\int_X (\sum_{n=1}^{\infty} f_n) d\mu = \sum_{n=1}^{\infty} \int_X f_n d\mu$. In particular, also $\lim_n f_n = 0$ a.e.

Problem 15. Let (X, \mathcal{F}, μ) be a measure space and assume $\{f_n\}$ is a sequence of non-negative measurable functions that converges to f a.e. If $\lim_n \int_X f_n d\mu = \int_X f d\mu < \infty$, is it true that $\lim_n \int_E f_n d\mu = \int_E f d\mu$ for every $E \subset \mathcal{F}$?

Problem 16. Let $\{f_n\}$ be a sequence of non-negative integrable functions such that $\lim_n \int_X f_n d\mu = 0$. If $g \in L(\mu)$ has the property that $gf_n \in L(\mu)$ for all n, does it follow that $\lim_n \int_X gf_n d\mu = 0$?

Problem 17. Let f, g, f_n, g_n be integrable functions, $n \in \mathbb{N}$. If $\lim_n f_n = f$ a.e., $|f_n| \leq g_n$ for all n, and $\lim_n \int_X g_n d\mu = \int_X g d\mu$, is it also true that $\lim_n \int_X f_n d\mu = \int_X f d\mu$?

Problem 18. Let f be a real-valued measurable function defined on [a, b] such that $\int_a^b f^n dx = c$ for n = 2, 3, 4. Show that $f = \chi_A$ a.e. for some measurable set $A \subset [a, b]$.

Problem 19. If $f \in L_1[0, 1]$, then for all $\varepsilon > 0$ there exists $\delta > 0$ such that $m(A) < \delta$ implies that $\int_A |f(x)| dx < \varepsilon$.

Problem 20. Show that if $f \in L(\mu)$, then $\lim_{\lambda \to \infty} \int_{\{|f| > \lambda\}} |f| d\mu = 0$.

Problem 21. Let (X, \mathcal{F}, μ) be a finite measure space, and f a measurable extended real-valued function defined on X. Show that $f \in L(\mu)$ if and only if $\sum_{k=1}^{\infty} \mu\{|f| \ge k\} < \infty$.

Problem 22 (see Problem 40). Discuss the following statements (prove or give a counter-example):

- (i) Convergence a.e. implies convergence in L_1 .
- (ii) Convergence in L_1 implies convergence a.e.
- (iii) Convergence in L_1 implies convergence in measure.
- (iv) Convergence in measure implies convergence a.e.
- (v) Convergence a.e. implies convergence in measure.

3. Qual Problems

Problem 23. [Jan'00] Suppose $E \subset \mathbb{R}$ has finite Lebesgue measure and $\varphi \in L_1(\mathbb{R})$. Show that

$$\lim_{t \to \infty} \int_E \varphi(x+t) \, dx = 0.$$

Problem 24. [Aug'00] Let (X, \mathcal{F}, μ) be a finite measure space. Let f_n be a sequence of measurable functions with $f_1 \in L_1(\mu)$ and with the property that

$$\mu\{x \in X : |f_n(x)| > \lambda\} \le \mu\{x \in X : |f_1(x)| > \lambda\}$$

for all n and all $\lambda > 0$. Prove that

$$\lim_{n} \frac{1}{n} \int_{X} \left(\max_{1 \le k \le n} |f_k| \right) d\mu = 0.$$

Problem 25. [Aug'00] Let f be a continuous function on [-1, 1]. Find

$$\lim_{n} n \int_{-1}^{1} f(x) (1 - n|x|) \, dx.$$

Problem 26. [Aug'01] Let $(\Omega, \mathcal{A}, \mu)$ be a σ -finite measure space, $f : \Omega \to \mathbb{R}$ measurable. Suppose there is a $c \in \mathbb{R}$ such that for all $X \subset \Omega$ of finite measure, $|\int_X f d\mu| \leq c$ holds. Prove that $f \in L_1(\Omega, \mathcal{A}, \mu)$.

Problem 27. [Aug'01] Let $g: [a, b] \to \mathbb{R}$ be Lebesgue measurable, and suppose $\int_a^b g\psi \, dx = 0$ for all continuous $\psi: [a, b] \to \mathbb{R}$. Prove that g = 0 a.e.

Problem 28. [Jan'02] Let $f_n: X \to [0, \infty)$ be a sequence of measurable functions on the measure space (X, \mathcal{F}, μ) . Suppose there is a positive constant M such that the functions $g_n(x) = f_n(x)\chi_{\{f_n \leq M\}}$

satisfy $||g_n||_1 \leq An^{-4/3}$ and for which $\mu\{x \in X : f_n(x) > M\} \leq Bn^{-5/4}$, where A and B are positive constants independent of n. Prove that

$$\sum_{n=1}^{\infty} f_n(x) < \infty \text{ a.e.}$$

Problem 29. [Jan'02] Let $\{f_n\}$ be a sequence of non-negative functions in $L_1[0, 1]$ with the property that $\int_0^1 f_n(t) dt = 1$ and $\int_{1/n}^1 f_n(t) dt \le 1/n$ for all n. Define $h(x) = \sup_n f_n(x)$. Prove that $h \neq L_1[0, 1]$.

Problem 30. [Aug'02] Let $f \in L_1[0,1]$ and let $F(x) = \int_0^x f(t) dt$. If E is a measurable subset of [0,1], show that

(i) $F(E) = \{F(x) : x \in E\}$ is measurable. (ii) $m\{F(E)\} \le \int_E |f(t)| dt$.

Problem 31 (see problem 14, Jan'03). Assume that f_n is Lebesgue measurable for $n \in \mathbb{N}$, $f_n \ge 0$, and $\sum_{n=1}^{\infty} \int f_n(x) dx < \infty$. Show that $f_n \to 0$ a.e.

Problem 32. In each case find $\lim_{n} \int_{0}^{\infty} f_{n}(x) dx$ and justify your answer.

(i)
$$f_n(x) = x^{-1/2} \cos\left(\frac{x+1}{n}\right) \chi_{[1,n-1]}$$
.
(ii) $f_n(x) = x^{-1/2} \sin\left(\frac{x+1}{n}\right) \chi_{[n,2n]}$.
(iii) $f_n(x) = x^{-1/2} \sin\left(1 + \frac{x}{n}\right) \chi_{(0,1)}$.

Problem 33. [Jan'04] Let $f \in L_1(\mathbb{R})$ satisfy

$$f(x) = 0$$
 if $|x| > 1$, (1)

$$\int_{\mathbb{R}} f(x)x^k \, dx = 0, k \in \mathbb{N}.$$
(2)

- (i) Prove that f = 0 a.e.
- (ii) Does your argument apply if (1) is replaced with the milder condition

$$|x^k f(x)| \to 0 \text{ as } |x| \to \infty \text{ for every } k \in \mathbb{N}.$$
 (3)

Justify your answer.

Problem 34. [Aug'04] Show that the following limit exists

$$\lim_{n} n \int_{1/n}^{1} \frac{\cos(x+1/n) - \cos x}{x^{3/2}} \, dx.$$

4

Problem 35. [Aug'04] A Lebesgue integrable function $f : \mathbb{R} \to \mathbb{R}$ has the property that

$$\int_E f(x) \, dx = 0$$

for all Lebesgue measurable sets $E \subset \mathbb{R}$ with $m(E) = \pi$. Prove or disprove that f = 0 a.e.

Problem 36. [Aug'05] Let $f : \mathbb{R} \to \mathbb{R}$ be Lebesgue measurable and in $L_1(\mathbb{R})$. Suppose that

$$\int_{a}^{b} f(x) dm(x) \ge 0 \text{ for all } a, b \in \mathbb{R}, a \le b.$$

Prove that $f \ge 0$ a.e.

Problem 37. [Aug'05] Prove that the following limit exists

$$\lim_{n} \int_0^\infty \frac{e^{-x} \cos x}{nx^2 + \frac{1}{n}} \, dx,$$

and find it, justifying all your steps.

Problem 38. [Aug'05] Let $f: [0,1] \to \mathbb{R}$ be Lebesgue measurable with f > 0 a.e. Let $\{E_n\}$ be a sequence of measurable sets in [0,1] with the property that $\lim_n \int_{E_n} f(x) dx = 0$. Prove that $\lim_n m(E_n) = 0$.

Problem 39. [Jan'06] Let $A \subset \mathbb{R}^n$ be a Lebesgue measurable set with positive and finite measure.

- (i) Let χ_A be the characteristic function of A, and set $\phi(x) = \int_{\mathbb{R}^n} \chi_A(y) \chi_A(x+y) \, dy$. Prove that ϕ is continuous.
- (ii) Use (i) to show that the set A A contains a neighborhood of the origin.

Problem 40. [Jan'06] Prove or give a counter-example to the following: Let $f_n \in L_1[0, 1]$, $n \in \mathbb{N}$ and suppose that $f_n \to 0$ in $L_1[0, 1]$. Then $f_n \to 0$ a.e.

Problem 41. [Aug'06] Suppose that f_n , $n \in \mathbb{N}$ is a sequence of integrable functions on [0, 1] such that $(a) \lim_n f_n(x) = 0$ for all $x \in [0, 1]$, and $(b) \int_0^1 f_n(x) dx = 0$ for all n. Does it follow that $\lim_n \int_0^1 |f_n(x)| dx = 0$? Either give a proof or a counter-example.

Problem 42. [Aug'06] Find the following limits and prove your answers:

(i)
$$\lim_{t \to 0^+} \int_0^1 \frac{e^{-t \ln x} - 1}{t} \, dx.$$

(ii)
$$\lim_{n} \int_{1}^{n^2} \frac{n \cos(x/n^2)}{1 + n \ln n} \, dx.$$

Problem 43 (Spring'07). Let (X, \mathcal{F}, μ) be a measure space and let $\{g_n\}$ be a sequence of nonnegative measurable functions with the property that $g_n \in L_1(\mu)$ for every n, and $g_n \to g \in L_1(\mu)$. Let $\{f_n\}$ be another sequence of nonnegative measurable functions on (X, \mathcal{F}, μ) .

(i) If $F_n \leq g_n$ a.e. for every *n*, prove that

$$\limsup_{n} \int_{X} f_n \, d\mu \leq \int_{X} \limsup_{n} f_n \, d\mu.$$
(ii) If $f_n \to f$ a.e. and if $f_n \leq g_n$ a.e. for all n , then $||f_n - f||_1 \to 0$ as $n \to \infty$.

Problem 44. [Jan'07] Let (X, \mathcal{F}, μ) be a measure space and let $\{g_n\}$ be a sequence of non-negative measurable functions with the property that $g_n \in L_1(\mu)$ for every n, and $g_n \to g$ in $L_1(\mu)$. Let $\{f_n\}$ be another sequence of non-negative measurable functions on (X, \mathcal{F}, μ) .

(i) If $f_n \leq g_n$ a.e. for every *n*, prove that

$$\limsup_{n} \int_{X} f_n \, d\mu \le \int_{X} \limsup_{n} f_n \, d\mu.$$

Hint: Start by considering a subsequence f_{n_r} such that $\lim_r \int_X f_{n_r} d\mu = \limsup_n \int_X f_n d\mu$, and let $g_{n_{rs}}$ be a subsequence of g_{n_r} such that $g_{n_{rs}} \to g$ a.e.

(ii) If $f_n \to f$ a.e. and if $f_n \leq g_n$ a.e. for all n, then $||f_n - f||_1 \to 0$ as $n \to \infty$.

6