L_p SPACES. V2.0

Problem 1. Let ν be a measure on the Borel sets f the positive real line $[0,\infty)$ such that $\phi(t) = \nu[0,t)$ is finite for every t > 0. Now let (X, \mathcal{F}, μ) be a measure space and f any non-negative measurable function on X. Then

$$\int_X \phi(f(x)) d\mu = \int_0^\infty \mu\{x \in X : f(x) > t\} d\nu.$$

Problem 2. Verify that for every measurable function f, and 0 ,

$$\int_X |f|^p \, d\mu = \int_0^\infty p \, t^{p-1} \mu\{|f| > t\} \, dt.$$

Problem 3 (The Layer cake representation). Verify that for every non-negative measurable function f,

$$f(x) = \int_0^\infty \chi_{\{f > t\}}(x) \, dt.$$

Problem 4. Suppose f and g are two non-negative functions satisfying the following inequality: There exists a constant C such that for all $\varepsilon > 0$ and $\lambda > 0$,

$$\mu\{x \in X : f(x) > 2\lambda, g(x) \le \varepsilon\lambda\} \le C\varepsilon^2 \,\mu\{x \in X : f(x) > \lambda\}.$$

Prove that

$$\int_X f(x)^p \, d\mu \le C_p \int_X g(x)^p \, dx$$

for any $0 for which both integrals are finite, where <math>C_p$ is a constant depending on C and p.

Problem 5. When does equality hold in Minkowski's inequality? The answer is different for p = 1 and for $1 . What about <math>p = \infty$?

Problem 6. Let $I = [0, \pi]$. Show that $\int_{I} x^{-1/4} \sin x \, dx \le \pi^{3/4}$.

Problem 7. Let $I = [0, \pi]$ and $f \in L_2(I)$. Is it possible to have simultaneously $\int_I (f(x) - \sin x)^2 dx \le 4/9$ and $\int_I (f(x) - \cos x)^2 dx \le 1/9$?

Problem 8. Let I be a bounded interval on \mathbb{R} . By means of an example, show that in general

$$\bigcap_{0$$

Problem 9. Suppose $f \in L_p(\mu), g \in L_q(\mu), h \in L_r(\mu), 1 < p, q, r < p$ ∞ , 1/p + 1/q + 1/r = 1. Prove that $fgh \in L(\mu)$ and that $||fgh||_1 \leq 1$ $||f||_p ||g||_q ||h||_r.$

Problem 10 (Spring'06). Show that $L_{\infty}(0,1) \subset \bigcap_{p>1} L_p(0,1)$. Is equality true?

Problem 11. Show that if for some $0 <math>f \in L_p(\mu) \cap L_{\infty}(\mu)$, then for all $p < q < \infty$, $f \in L_q(\mu)$ and $||f||_q \le ||f||_p^{p/q} ||f||_{\infty}^{1-p/q}$.

Problem 12 (Spring'06). Show that if $f \in L_p[0,1] \cap L_r[0,1]$, with p < r, then $f \in L_s[0,1]$ for all $p \le s \le r$.

Hint: The result is also true for a general measure space. Prove that $||f||_s \leq ||f||_p^{1-\eta} ||f||_r^{\eta}$, where $0 < \eta < 1$ is given by $1/s = (1 - \eta)/p + \eta/r$.

Problem 13. Prove that if $\mu(X) < \infty$ and $f \in L_p \cap L_\infty$ for some $p < \infty$ so that $f \in L_q$ for all q > p, then $||f||_{\infty} = \lim_{q \to q} ||f||_q$.

Problem 14. Suppose $\mu(X) = 1$, and $f \in L_p$ for some p > 0, so that $f \in L_q$ for 0 < q < p. Prove the following statements:

- (i) $\log \|f\|_q \ge \int \log |f|$. (ii) $\int \frac{|f|^q 1}{q} \ge \log \|f\|_q$, and $\int \frac{|f|^q 1}{q} \to \int \log |f|$ as $q \to \infty$.
- (iii) $\lim_{q \to 0} ||f||_q = \exp(\int \log |f|).$

Problem 15. Prove that if $\lim_n ||f_n||_p = 0, 1 \leq p \leq \infty$, then there exists a subsequence $\{f_{n_k}\}$ and a non-negative function $h \in L_p(\mu)$ such that $|f_{n_k}| \leq h$ a.e., and $\lim_k f_{n_k} = 0$ a.e.

Problem 16. Prove the following statements: Suppose $1 \le p < \infty$. If $||f_n - f||_p \to 0$, then $f_n \to f$ in measure, and hence some subsequence converges to f a.e. On the other hand, if $f_n \to f$ in measure and $|f_n| \le g \in L_p$ for all n, then $||f_n - f||_p \to 0$.

Problem 17. Prove that if $f, f_n \in L_p(\mu), g, g_n \in L_q(\mu), ||f_n - f||_p \to$ 0, and $||g_n - g||_q \to 0, 1 \le p, q \le \infty, 1/p + 1/q = 1$, then $||f_n g_n - fg||_1 \to 0$ 0.

Problem 18. Suppose $f, f_n \in L_p(\mu), n \in \mathbb{N}$ satisfy $\lim_n f_n = f$ a.e., and $\lim_{n} ||f_{n}||_{p} = ||f||_{p}, 0 . Prove that <math>\lim_{n} ||f_{n} - f||_{p} = 0$. Is

 $\mathbf{2}$

the conclusion still true if we replace a.e. convergence by convergence in measure?

Problem 19. Let (X, \mathcal{F}, μ) be a finite measure space, 0 < r < pand $\{f_n\}$ a sequence of $L_p(\mu)$ functions such that $||f_n||_p \leq k$ for all n, and $\lim_n f_n = f$ a.e. Prove that $\lim_n ||f_n - f||_r = 0$. Prove that the conclusion my fail with $\mu(X) = \infty$.

Problem 20 (Spring'05). Let (X, \mathcal{F}, μ) be a measure space and let $1 \leq p < \infty$. If $\{f_n, f\} \in L_p(\mu)$ and $\int_X f_n g \, d\mu \to \int_X fg \, d\mu$ for every $g \in L_{p'}(\mu), 1/p + 1/p' = 1$, show that

$$\|f\|_p \le \liminf_n \|f_n\|_p.$$

Problem 21 (Spring'05). Let $f_n: I \to \mathbb{R}^+$ be non-decreasing on I = [a, b] with $||f||_{\infty} \leq M < \infty$, $n \in \mathbb{N}$. Assume that $\{f_n\}$ converges on a dense subset of I. Show that $\{f_n\}$ converges at every point of I except perhaps a countable set.

Problem 22 (Fall'06). suppose that $f_n \in L_1[0,1]$, $n \in \mathbb{N}$ is such that $\lim_n f_n(x) = f(x)$ a.e. x.

- (i) Suppose that $\lim_{n} |f_n(x)|^{1/p} = |f(x)|^{1/p}$ uniformly on [0, 1]. Prove that then $\lim_{n} |f_n|^{1/p} = |f|^{1/p}$ in $L_p[0, 1]$, i.e. prove that $\lim_{n} \left\| |f_n|^{1/p} - |f|^{1/p} \right\|_p = 0.$
- (ii) Prove that the conclusion in (i) still holds if instead of the uniform convergence of $|f_n|^{1/p}$, we assume that $\lim_n f_n = f$ in $L_1[0, 1]$, i.e. $\lim_n ||f_n f||_1 = 0$.

Problem 23 (Spring'07). Let (X, \mathcal{F}, μ) be a finite measure space. Let $f_n: X \to [0, \infty)$ be a sequence of measurable functions and suppose that $||f_n||_p \leq 1, 1 , and that <math>f_n \to f$ a.e. Prove:

(i) $f \in L_p(\mu)$. (ii) $||f_n - f||_1 \to 0$ as $n \to \infty$.

Problem 24. Show that each function $f \in L_p(\mu)$, $0 satisfies the following property: <math>\lim_{\lambda} \lambda^p \mu\{|f| > \lambda\} = 0$.

Problem 25 (Fall'05). Let f be Lebesgue measurable on [0, 1] with the property that $||f||_2 = 1$ and $||f||_1 = 1/2$. Prove that

$$\frac{1}{4}(1-\lambda)^2 \le m \{ x \in [0,1] : |f(x)| \ge \lambda/2 \},\$$

for all $0 \leq \lambda \leq 1$.

Problem 26 (Spring'05). Let (X, \mathcal{F}, μ) be a measure space, $f: X \to \mathbb{R}$ measurable, and let $1 \leq p_1 < p_2 < \infty$. Assume there exist constants $0 < c_1, c_2 < \infty$ such that

$$\mu\{x: |f(x)| > y\} \le \frac{c_j}{y^{p_j}}; j = 1, 2,$$

for every y > 0. Show that $f \in L_p(\mu)$, $p_1 .$