Quiz 6 Key - MA16020 - January 26, 2018

Alden Bradford

Min	Mean	Max
1	6.7	10

1. (7 points) Solve the differential equation

$$
y^{\prime}(t)=(y / t)^{2}
$$

where $y(2)=2 / 5$.

$$
y(t)=\frac{t}{1+2 t}
$$

2. (3 points) Write (but do not solve) a differential equation to describe the following situation. The viral load (the number of infected cells) in a person infected with influenza changes at a rate jointly proportional to the number of infected cells and to the number of cells which have not yet been infected. Note: the human body has about 10^{14} (100 trillion) cells total. Choose suitable letters for your constants and variables.

$$
\begin{aligned}
& V=\text { number of infected cells } \\
& t=\text { time } \\
& k=\text { constant of proportionality } \\
& \frac{d V}{d t}=k V\left(10^{14}-V\right)
\end{aligned}
$$

