Quiz 6 Key — MA16020 — January 26, 2018

Alden Bradford

Min	Mean	Max
1	6.7	10

1. (7 points) Solve the differential equation

$$y'(t) = (y/t)^2$$

where
$$y(2) = 2/5$$
.
$$y(t) = \frac{t}{1+2t}$$

2. (3 points) Write (but do not solve) a differential equation to describe the following situation. The viral load (the number of infected cells) in a person infected with influenza changes at a rate jointly proportional to the number of infected cells and to the number of cells which have not yet been infected. Note: the human body has about 10^{14} (100 trillion) cells total. Choose suitable letters for your constants and variables.

V = number of infected cells

t = time

k =constant of proportionality

$$\frac{dV}{dt} = kV(10^{14} - V)$$