MA161 FINAL EXAM PRACTICE — ALDEN BRADFORD — FALL 2018

1. Find the derivative of the function

$$g(x) = \int_0^x \cos(2\pi t) \, dt$$

- 2. $f''(x) = \cos x \sin x$, f'(0) = 0, and $f(\frac{\pi}{4}) = 0$. Find $f(\frac{\pi}{2})$.
- 3. Estimate the area under the graph of $f(x) = x^2$ from x = 0 to x = 3 using three approximating rectangles, equal width subintervals, and right endpoints.
- 4. Find f, given that $f(\frac{1}{2}) = 9$ and $f'(x) = \frac{7}{\sqrt{1-x^2}}$

5. If
$$\int_{a}^{b} f(x) dx = 5$$
 and $\int_{a}^{b} g(x) dx = -1$, which of the following MUST be true?

I.
$$f(x) > g(x)$$
 for $a \le x \le b$
II. $\int_{a}^{b} [f(x) + g(x)] dx = 4$
III. $\int_{a}^{b} [f(x)g(x)] dx = -5$

6. Evaluate the integral by interpreting it in terms of areas.

$$\int_{-4}^{0} (1 + \sqrt{16 - x^2}) \, dx$$