Quiz 8 Key — MA161 — September 26, 2018 Alden Bradford

Min	Mean	Max
3	15	20

1. (9 points) Determine whether each of these equations is true or false:

(a) $\sin^{-1}\left(\sin\left(\right.\right.\right)$	$\left(\frac{2\pi}{3}\right) = \frac{2\pi}{3}$
(b) $\cos^{-1}\left(\cos\left(\right.\right.\right)$	$\left(\frac{2\pi}{3}\right) = \frac{2\pi}{3}$
(c) $\tan^{-1}\left($	$\left(\frac{2\pi}{3}\right) = \frac{2\pi}{3}$
(a) False	(b) True

(c) False

Note: This problem appeared on the second midterm exam in the fall of 2017.

2. (11 points) If $y = \sqrt{\sin 3x}$ find y'.

 $\frac{3\cos 3x}{2\sqrt{\sin 3x}}$ Note: This problem appeared on the second midterm exam in the fall of 2016