Quiz 1 - MA261 - June 16, 2017

Christina Jamroz, Alden Bradford

1. (8 points) Let $\mathbf{u}=\langle 1,0,5\rangle$ and $\mathbf{v}=\langle-2,6,1\rangle$. Find:
(a) $2 \mathbf{u}$
(b) $\mathbf{u}-\mathbf{v}$
(c) $\mathbf{u} \cdot \mathbf{v}$
(d) $\mathbf{u} \times \mathbf{v}$
(a) $\langle 2,0,10\rangle$
(c) 3
(b) $\langle 3,-6,4\rangle$
(d) $\langle-30,-11,6\rangle$
2. (6 points) Find a value for t such that the vectors $18 \mathbf{i}+t \mathbf{j}$ and $2 \mathbf{i}-4 t \mathbf{j}$ are perpendicular.
If the vectors are perpendicular, their dot product will be zero.

$$
\begin{aligned}
(18 \mathbf{i}+t \mathbf{j}) \cdot(2 \mathbf{i}-4 t \mathbf{j}) & =0 \\
36-4 t^{2} & =0 \\
(3+t)(3-t) & =0
\end{aligned}
$$

Hence, we must have $t=3$ or $t=-3$.
3. (6 points) \mathbf{a} and \mathbf{b} form two sides of the equilateral triangle with side length 2 shown below. Find $|\mathbf{a} \times \mathbf{b}|$. Should $\mathbf{a} \times \mathbf{b}$ point into the page, or out of the page?

Using the formula $|\mathbf{a} \times \mathbf{b}|=|\mathbf{a}||\mathbf{b}| \sin \theta$ with $\theta=\frac{\pi}{3}$ we find $|\mathbf{a} \times \mathbf{b}|=2 \sqrt{3}$. The right-hand rule tells us the vector will point into the page.

