Quiz 1 — MA261 — June 16, 2017 Christina Jamroz, Alden Bradford

1. (8 points) Let $\mathbf{u} = \langle 1, 0, 5 \rangle$ and $\mathbf{v} = \langle -2, 6, 1 \rangle$. Find:

(a) 2 u	(b) u - v	(c) $\mathbf{u} \cdot \mathbf{v}$	(d) $\mathbf{u} \times \mathbf{v}$
(a) $\langle 2, 0, 10 \rangle$		(c) 3	
(b) $\langle 3, -6, 4 \rangle$		(d) $\langle -30, -11, 6 \rangle$	

2. (6 points) Find a value for t such that the vectors $18\mathbf{i} + t\mathbf{j}$ and $2\mathbf{i} - 4t\mathbf{j}$ are perpendicular.

If the vectors are perpendicular, their dot product will be zero.

$$(18\mathbf{i} + t\mathbf{j}) \cdot (2\mathbf{i} - 4t\mathbf{j}) = 0$$

 $36 - 4t^2 = 0$
 $(3 + t)(3 - t) = 0$

Hence, we must have t = 3 or t = -3.

3. (6 points) **a** and **b** form two sides of the equilateral triangle with side length 2 shown below. Find $|\mathbf{a} \times \mathbf{b}|$. Should $\mathbf{a} \times \mathbf{b}$ point into the page, or out of the page?

Using the formula $|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}| |\mathbf{b}| \sin \theta$ with $\theta = \frac{\pi}{3}$ we find $|\mathbf{a} \times \mathbf{b}| = 2\sqrt{3}$. The right-hand rule tells us the vector will point into the page.