## Quiz 2 - MA261 — June 20, 2017

Christina Jamroz, Alden Bradford

1. (6 points) Find the length of the curve $\mathbf{r}(t)=\mathbf{i}+t^{2} \mathbf{j}+t^{3} \mathbf{k}$, $0 \leq t \leq 1$.

$$
\begin{aligned}
& \mathbf{r}^{\prime}(t)=2 t \mathbf{j}+3 t^{2} \mathbf{k}, \quad\left|r^{\prime}(t)\right|=t \sqrt{4+9 t^{2}} \\
& L=\int_{0}^{1} t \sqrt{4+9 t^{2}} d t=\frac{1}{27}\left(13^{3 / 2}-8\right)
\end{aligned}
$$

2. (6 points) At what points does the helix $\mathbf{r}(t)=\langle\sin t, \cos t, t\rangle$ intersect the sphere $x^{2}+y^{2}+z^{2}=5$ ? Give the coordinates, not just the $t$-values.
Substitute $\mathbf{r}(t)$ into the equation of the sphere:

$$
\begin{aligned}
\sin ^{2} t+\cos ^{2} t+t^{2} & =5 \\
t^{2} & =4 \\
t & = \pm 2
\end{aligned}
$$

Now put the $t$-values found back into $\mathbf{r}(t)$ to get $\langle\sin 2, \cos 2,2\rangle$ and $\langle\sin (-2), \cos (-2),-2\rangle$.
3. (8 points) Let $\mathbf{r}(t)=t e^{t} \mathbf{i}-2 \mathbf{j}+\sin (t) \mathbf{k}$.
(a) Find $\mathbf{r}^{\prime}(t)$.
(b) Find a vector equation for the line $\mathbf{u}(t)$ tangent to the curve at the point where $t=0$.
(a) $\mathbf{r}^{\prime}(t)=(1+t) e^{t} \mathbf{i}+\cos (t) \mathbf{k}$.
(b) $\mathbf{r}(0)=-2 \mathbf{j}, \mathbf{r}^{\prime}(0)=\mathbf{i}+\mathbf{k} . \mathbf{u}(t)=(\mathbf{i}+\mathbf{k}) t-2 \mathbf{j}$.

