Quiz 2 — MA261 — June 20, 2017 Christina Jamroz, Alden Bradford

1. (6 points) Find the length of the curve $\mathbf{r}(t) = \mathbf{i} + t^2 \mathbf{j} + t^3 \mathbf{k}$, $0 \le t \le 1$.

$$\mathbf{r}'(t) = 2t\mathbf{j} + 3t^2\mathbf{k}, \ |r'(t)| = t\sqrt{4+9t^2}.$$

$$L = \int_0^1 t\sqrt{4+9t^2}dt = \frac{1}{27}(13^{3/2}-8).$$

2. (6 points) At what points does the helix $\mathbf{r}(t) = \langle \sin t, \cos t, t \rangle$ intersect the sphere $x^2 + y^2 + z^2 = 5$? Give the coordinates, not just the *t*-values.

Substitute $\mathbf{r}(t)$ into the equation of the sphere: $\sin^2 t + \cos^2 t + t^2 = 5$ $t^2 = 4$ $t = \pm 2$ Now put the *t*-values found back into $\mathbf{r}(t)$ to get $\langle \sin 2, \cos 2, 2 \rangle$ and $\langle \sin(-2), \cos(-2), -2 \rangle$.

- 3. (8 points) Let $\mathbf{r}(t) = te^t \mathbf{i} 2\mathbf{j} + \sin(t)\mathbf{k}$.
 - (a) Find $\mathbf{r}'(t)$.
 - (b) Find a vector equation for the line $\mathbf{u}(t)$ tangent to the curve at the point where t = 0.

(a)
$$\mathbf{r}'(t) = (1+t)e^t \mathbf{i} + \cos(t)\mathbf{k}.$$

(b) $\mathbf{r}(0) = -2\mathbf{j}, \mathbf{r}'(0) = \mathbf{i} + \mathbf{k}. \ \mathbf{u}(t) = (\mathbf{i} + \mathbf{k})t - 2\mathbf{j}.$