Quiz 7 — MA261 — July 20, 2017 Christina Jamroz, Alden Bradford

- 1. (4 points) Find the gradient vector field of $f(x, y, z) = xy^2 z$. $\nabla f = \langle f_x, f_y, f_z \rangle = \langle y^2 z, 2xyz, xy^2 \rangle$
- 2. (6 points) Let $\mathbf{F}(x, y) = \langle 2y, x \rangle$. Integrate $\mathbf{F} \cdot d\mathbf{r}$ along the path $y = x^2$ from (0, 0) to (1, 1).

Using
$$y = x^2$$
 we find $dy = 2xdx$ and so

$$\int 2y \, dx + x \, dy = \int_0^1 2x^2 \, dx + x2x \, dx$$

$$= \int_0^1 (4x^2) \, dx$$

$$= 4/3$$

3. (10 points) For each function **F** below, determine whether **F** is conservative. If it is, find a function f such that $\mathbf{F} = \nabla f$.

(a)
$$\mathbf{F} = \langle 2xy, x^2 + y^2 \rangle$$
 (b) $\mathbf{F} = \langle xe^y, e^y \rangle$
(a) $\frac{\partial}{\partial y} 2xy = 2x = \frac{\partial}{\partial x} (x^2 + y^2)$ so the field is conserva-
tive.
 $f(x, y) = \int 2xy \, dx = x^2y + g(y)$
 $f(x, y) = \int (x^2 + y^2) \, dy = x^2y + \frac{y^3}{3} + h(x)$
 $f(x, y) = x^2y + \frac{y^3}{3} + C$
(b) $\frac{\partial}{\partial y} xe^y = xe^y$ while $\frac{\partial}{\partial x}e^y = 0$. The function is not
conservative.