Quiz 9 - MA261 — July 28, 2017

Christina Jamroz, Alden Bradford

1. (10 points) Find a parametric representation of the part of the surface $x^{2}+y^{2}=4 z^{2}$ that lies above the $x y$-plane.
Switch to cylindrical coordinates. Then the equation becomes $r^{2}=4 z^{2}$. Since we are looking above the $x y$ plane, this means $r=2 z$, or $z=r / 2 . \quad r$ and θ are the free variables, and the parametric representation is $\langle r \cos \theta, r \sin \theta, r / 2\rangle$ where $0 \leq \theta<2 \pi, r>0$.
2. (10 points) Evaluate $\iint_{S} x^{2} y z d S$, where S is the part of the plane $z=1+2 x+3 y$ that lies above the rectangle $[0,3] \times[0,2]$.

$$
\text { Here } \frac{\partial z}{\partial x}=2 \text { and } \frac{\partial z}{\partial y}=3 \text { so } \sqrt{\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}+1}=\sqrt{14} .
$$

$$
\begin{aligned}
\iint_{S} x^{2} y z d S & =\sqrt{14} \int_{0}^{2} \int_{0}^{3} x^{2} y(1+2 x+3 y) d x d y \\
& =\sqrt{14} \int_{0}^{2} \int_{0}^{3} x^{2} y+2 x^{3} y+3 x^{2} y^{2} d x d y \\
& =\sqrt{14} \int_{0}^{2} \frac{1}{3} x^{3} y+\frac{1}{2} x^{4} y+\left.x^{3} y^{2}\right|_{0} ^{3} d y \\
& =\sqrt{14} \int_{0}^{2} 9 y+\frac{81}{2} y+27 y^{2} d y \\
& =\left.\sqrt{14}\left(\frac{9}{2} y^{2}+\frac{81}{4} y^{2}+9 y^{3}\right)\right|_{0} ^{2} \\
& =\sqrt{14}(18+81+72) \\
& =171 \sqrt{14}
\end{aligned}
$$

