Hilbert Spaces of

Entire Functions

Louis de Branges

Professor of Mathematics
Purdue University

Prentice-Hall, Inc,
Englewood Cliffs, N.J.



PRENTICE-HALL SERIES IN MODERN ANALYSIS

R. CREIGHTON BLICK, editor

© 1968 by Prentice-Hall, Inc,, Englewood Cliffs, N.J.

All rights rescrved,

No part of this book may be reproduced
in any form or by any means without per-
mission in writing from the publisher,

Library of Congress Catalog Gard Number: 68-18736

Current printing (last digit):
0 98 76 5% 4 3 2 1

Printed in the United States of America

PRENTICE-HALL INTERNATIONAL, ING. London
PRENTICE-HALL OF AUSTRALIA, PTY. LTD. Sydney
PRENTICE-IIALL OF CANADA, LTD. Toronto
PRENTICE-IIALL OF INDIA PRIVATE LTD. New Delhi
PRENTICE-HALL OF JAPAN, ING. Tokyo



Preface

Anyone approaching Hilbert spaces of entire functions for the first time will
see the theory as an application of the classical theory of entive functions,
The main tools are drawn from classical analysis. These are the Phragmén-
Lindelof principle, the Poisson representation of positive harmonic functions,
the factorization theorem for functions of Pélya class, Nevanlinna’s theory of
functions of bounded type, and the Titchmarsh-Valiron theorem relating
growth and zeros of entire functions of exponential type. Chapter 1 is an
expository account of these fundamental principles as they are used in my
applications,

The origins of Hilbert spaces of entire functions are found in a theorem
of Paley and Wicner that characterizes finite Fourler transforms as entire
functions of exponential type which are square integrable on the real axis.
This result has a striking consequence which is meaningful without any
knowledge of Fourier analysis. The identity

[ @ = i) S FGamfay

holds for any entire function F{z) of exponential type at most a which is
squarc integrable on the real line. The formula is ordinarily derived from
a Fourier series expansion of the Fourier transform of F(z). In the fall of
1958, 1 discovered an essentially different proof which requires nothing more
than a knowledge of Cauchy’s formula and basic properties of orthogonal
sets. The identity is a special case of a general formula which relates mean
squares of entire functions on the whole real axis to mean squares on a
stquence of real points. Certain Hilbert spaces, whose clements are entire
func.tions, enter into the proof of the general identity.

Since the identity has its origins in Fouricr analysis, I conjectured that a
generalization of Fourier analysis was associated with these spaces. I spent

iii



iv PREFACE

the years 1958-1961 verifying this conjecture. The outlines of the theory are
best seen by using the invariant subspace concept. A fundamental problem
is to determine the invariant subspaces of any bounded lincar transformation
in Hilbert space and to write the transformation as an integral in terms of
invariant subspaces. A similar problem can be stated for an unbounded or
partially defined transformation once the invariant subspace concept is
clarified. For those who have had no previous acquaintance with Hilbert
spaccs of entire functions, it may help to say that they are the invariant
subspaces appropriate for a certain kind of transformation. The theory of
Hilbert spaces of entire functions is the best behaved of all invariant subspace
theories, Nontrivial invariant subspaces always exist for nontrivial trans-
formations. Invariant subspaces are totally ordered by inclusion. The
transformation admits an integral representation in terms of its invariant
subspaces. This representation is stated as a generalization of the Paley-
Wiener theorem and Fourier transformation. Chapter 2 is devoted to the
theory of the spaces. The rest of the book is concerned with examples and
applications,

The known examples of Hilbert spaces of entire functions belong to the
theory of special functions, a subject which is very old in relation to most of
modern analysis. The foundations of the theory were laid by Leonard Euler
{1707-1783) in the century following the discovery of the calculus. I do not
take the historical approach to the subject, which is alrcady so well repre-
sented by Whittaker and Watson. I have tried instead to find characteristic
fcatures of known cigenfunction expansions which can be used for a syste-
matic derivation of their propertics. For example, the Fourier expansion is
characterized by its relation to translations. I determine all Hitbert spaces
of entire functions which admit a two-sided isometric shift. The Hankel
transformation is characterized by its relation to homogeneous substitutions.
I determine all Hilbert spaces of entire functions which admit homogeneons
substitutions as isometrics. The eigenfunction expansions associated with
Jacobi polynomials are of great interest as they include the Legendre
expansion, which occurs in the quantum mechanical theory of angular
momentum. The corresponding Hilbert spaces of entire functions are like
the spaces of Fourier analysis in that they admit a two-sided shift. But the
shift is not isometric. The isometric property is replaced by an inner product
identity. The Gauss and Kummer expansions are closely related to the
Jacobi expansion. The corresponding Hilbert spaces of entire functions are
characterized by a similar identity. An interesting application of these
expansions is given in M. Rosenblum’s theory of the Hilbert matrix.

Hilbert spaces of entire functions also have other applications. An
obvious area is approximation by polynomials or entire functions of expo-
nential type. Since it was through such problems that I discovered the spaces,
it was easy enough for me to include material for readers with these interests.
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I give an account of my thesis results on the problem of local operators on
Fourier transforms. This is equivalent to an approximation problem for
entire functions of exponential type. The results on the problem include a
simple proof and a generalization of Levinson’s theorem on nonvanishing
Fourier transforms. I also include a proof of the remarkable theorem of
Beurling and Malliavin on the domain of local operators. The theorem can
also be stated as an existence theorem for certain kinds of subspaces of a Hil-
bert space of entire functions. In this form it has several applications. One
of these is the construction of measurcs of finite total variation which are
supported in a given set and whose Fourier transforms vanish in a given
interval. The extreme points of the convex sct of such measures of total
variation at most one have interesting special properties. Although it is easy
to construct entire functions with given zeros, it is quite difficult to estimate
the functions so obtained. I use the extreme point method to construct
nontrivial entire functions whose zeros lie in a given set and whose reciprocals
admit absolutely convergent partial fraction decompositions. A classical
problem is to estimate an entire function of exponential type in the complex
plane from estimates on a given sequence of points, I construct Hilbert
spaces of entire functions of exponential type with norm determined by what
happens on a given sequence of real peints.

Some additional examples of Hilbert spaces of entire functions were not
completed in time for inclusion in the book and will be published elsewhere.
Several unexplained items in my list of references are material required for
this unpublished work.

The book presumes a knowledge of Hilbert space and analytic function
theory as presented in my book with James Rovnyak on Square Summable
Power Series (Holt, Rinchart and Winston, 1966), referred to here as SSPS.
T expect to supplement this eventually with publication of my lecture notes
on Quantum Power Series.

L. de B.
Purdug University
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CHAPTER i

Entire Functions

|. PHRAGMEN-LINDELOF PRINCIPLE

In this chapter we review the analytic function theory which is required
as background knowledge for the theory of Hilbert spaces of entire functions
presented in Chapter 2. The notation z = x + 1y is used for a complex
variable. We are concerned mainly with properties of functions analytic
in the upper half-plane, y > 0.

If a function f{z) is analytic in the unit disk, |z| <C 1, and has a con-
tinuous extension to the closed disk, then [f(2)| must attain a maximum
vahue in the closed disk. By the maximum principle, the maximum does
not occur in the interior of the disk when f{z) is not a constant. Tt follows
that f(z) is bounded by 1 in the disk if it is bounded by 1 on the boundary
of the disk. The situation is different in the upper half-plane because
~axima may not exist in the closure of an unbounded region.
it Clonsider a function f(z) which is analytic in the upper halfplane,
_ -'_'_wllich is continuous in the closed half-plane, and which is bounded by 1 on
“-the real axis. We would like to conclude that £(z) is bounded by 1 in the

- :halfplane. The example f{z) == ¢~* shows that some hypothesis is necessary,

‘Ihe Phragmén-Lindels{ principle states that this conclusion is valid if f(z)
s, bounded in the half-plane, or if it satisfies a weaker hypothesis of the same
. nature. The notation log* x is used for max (0, log x) when x = 0.

~ THEOREM I, Assume that f(z} is analytic in the upper half-plane, that
[f(2)] has a continuous extension to the closed half-plane, and that
lim inf =1 j " Jog* [ f{ae®)| sin 6 df = 0.
[ ] 0

181 £(2) is bounded by I on the real axis, then it is bounded by 1 in the
upper half-plane,
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Proof of Theorem 1. We start with an estimate of | f(z}] in the upper half.
disk, |z[ << 1 and y > 0, from a knowledge that | f(2)} is bounded by 1 on
the real part of the boundary of the half-disk. If 2(8} is any continuous, real
valued function of real § which is peripdic of period 2m, there exists a
function g(z}, which is analytic for |z| < 1, such that Re g(z) has a con-
tinuous extension to the closed half-disk and A(0) = Re g(¢*} for all real 6,
It is given by

1 jzn el 2z

oy ~ h(B)d0

4(2) =
for iz] <2 1. We use this construction with £{8) = log*|f(e®®| for 0 < 6 < =,
Extend A(0) so as to be an odd periodic function of real § which is periodic
of period 2ar. This is possible because | f(z)| is bounded by 1 on the real axis,
Since

1 " i0 1
oz = [ zh(O)dO ~—j Ta.,i;f 1(0)d0
2m o0 gt

O 0 g0 .

for jz| <¢ 1, we obtain

L2 e R(O)E 1 — |2 ;x A(B)dO
Reg(z) = o fo E— — J. [ — z|?
1 —Jz|® J'rr dyh(8) sin 6 49
T 9 |ew — zj? iemz‘ﬂ — z|? '

Note that Re g(z) vanishes on the real part of the unit disk. Since we assume
that|f(z)| < 1 on the real axis, f(z}/exp g(z} is bounded by 1 on the bound-
ary of the upper half-disk. By the maximum principle, the function is
bounded by 1 in the interior of the half-disk. Explicitly, we have

1 — |z|2 x4y logh | f(£%)} sin @ 400
tog |/(2)] < 112 [ o8 L
aw

|ez'8 - zla Ie — z‘z
for {z] << 1 and » > 0. The same argument applies with f{z) replaced by
S(az) whena > 0. If zis replaced by zfa in the resulting inequality, it reads

« 4ay log* | f{ae®®)| sin § d6

a? — |2
log | f(2)] = o .’.o lag?® - z|? |ae~

— zf?
for |z]| << a and » > 0. If |z| < ea where ¢ < 1, then

[ae® — 2| = a(l — |zfa]) = a(l — e).
For each fixed z in the upper half-plane, we obtain

log if(2)} < (2y/m)(1 — €)~*lim infa! j log* | f{aei®)] sin B 49.

a-reo
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Th 2

since € i¢ arbitrary,

log [f(al = (2yfwr) liiriiwnf a? J.: log* | f(ae’®)| sin 8 dO

and the theorem follows.

.. ANALYTIC FUNCTIONS WITH GIVEN
* MoDULUS ON THE REAL AXIS

In applying the Phragmén-Lindelsf principle, we will need to construct
nctions which are analytic in the upper half-plane and which have a

fu . -
ulus at points on the real axis.

given mod

THEOREM 2. Let A(x) be a continuous function of real x such that 2(x) =1
for all real x and

[ (14 ) log Aty < oo.
Then the formula

1 j,m 14 Llogh(t)dt =z Jx;.w log A(t)dt
— | -2 t— z i

log f(z) = T

defines a function f(z), which is analytic in the upper half-plane, such that
[f(2)] =}, 1f(2)] bas a continuous extension to the closed half-plane, and
|f(x)| = h(x) for all real x.

Proaf of Theorem 2. Tt is clear that log f(z) is a well-defined function which
is analytic in the upper half-plane. Since
b 2% I+ 2 z— 2z b4 2

i(t_z)—i(t_z)+ ; “23’“_42:

" 'we obtain

. +o  lo

- "_-._'f.f_Ol' > 0. Since we assume that A(x) =1 for all real x, it follows that
2 1f(#)] = 1 for y > 0. The main problem is to show that| f(z)] is continuous

m the closed half-plane and has A(x) as boundary value function. Let u be
any fixed real number. We must show that log A(x) = lim Relog f(z) as

- z— u through nonreal values. Explicitly the problem is to show that

log h(u) == IimZJ.*"“’ log A{t)dt )
. gorgg T Y0 (t - x)‘a '|".J)2
Since
I [t dt

b == T a2 g .8?
g d-w (t — x)% 432
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it 1s sufficient to show that

0 — lim _ij'm [log A(t) — log A{u)|dt
wz*u (t_x)z “}“.yz )

If € > 0 is given, choose § > 0 so that [log A{f) — log h(x)| < }e whenevey
|6 —af < 8. If |u — xf < L, then

r_m ifog h(t) — log h(w) !flt < e Ju—a llog A(t) ~- log h(u)|dt
(t — x)% + »? ¢ t~u + §6)2
J [+ |log h(t) — log h{u)|dt
mives (L —au— §0)E

when » is sufficiently small,

PROBLEM I, Let f(z) be a function which is analytic and has a nonnegative
real part in the upper half-plane. Assume that Re f(z) has a continuous
extension to the closed half-plane and that £(x) is a bounded, continuous
function of real » such that 0 < h(x) < Re f(x) for all real x. Show that

y +w h{t)dt
Re f(x f iy
for y > 0. Hint: Apply the Phragmén-Lindelsf principle to an appropriate
function which is analytic and bounded in the upper half-plane.

PROBLEM 2, Let f(z) be a function which is analytic and has a nonnegative
real part in the upper half-plane. If Re f(z) has a continuous extension to
the closed half-plane, show that there exists a function g{z), which is analytic
and has a nonnegative rcal part in the upper half-plane, such that

Re f(1)
t—x}a—l—y

for y > 0. Show that Re g(z) is continuous in the closed half-plane and that
Re g(x) = 0 for all real .

Ref(x—|-zvy) chx—f‘w) |_fi00

PROBLEM 3. Lctg{z) be a function which is analytic and has a nonnegative
real part in the upper half-plane. Assume that Re g(z) is continuous in
the closed half-plane, and that Reg{x) = 0 for all real x. Show that
Re g(x + ip) = py where p is a constant. Fint: Show that

— |z|? px4ay Re g(aew) sin 6 40

2
Re g(z) = z —

2o ¢ {ae® — z[? |ag~® — z|?

when g > 0, [z << g, and y = 0.
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Th )
gLEM 4. In Problems 2 and 3, show that
PRO ’ ) ,
p = lim Re f{iy)[».
Yo
3 STIELTJES INVERSION FORMULA

A more general treatment of boundary behavior is contained in the

gieltjes inversion formula.

THEOREM 3. Let plx) bc a nondecreasing function of real x such that

J‘-n-m (1 -+ 2yl << 0. Then
- =L pol b2 du) | 2 e dulf)

did=o 1 f Ptz | mid-o 1 4 2
i analytic and has a nonnegative real part in the upper half-plane. If ¢ and
1; are points of continuity of u{x), a <, then
p(b) — (@) =lim [" Re flx + ip)de.

¥™0

Proof of Theorem 3. As in the proof of Theorem 2, f(z) is a well-defined
function which is analytic in the upper half-plane and

_ 2o dulh
Ref@ = L
. The proof of the Stieltjes inversion formula requires a change in the order
*: of integration to yield

T J:' Re f(x + w)dx = 'yq; f:: fh dx (&)

U A—
TR O

1 0 b — ¢ — ¢
— f+ I:arctan — arctan ¢ }d,u(t).
ar J—o ¥ b

- The interchange is justified by Fubinf’s theorem since the integrand is

. nonnegative. To complete the proof we must show that

— ¢ —
’ — arctan = }d,u(t).
J

If €3> 0 is given, choose § by the continuity of u(x) at a and b so that

#i"(a +0) —pla— 08y <¢/5 and wu(b + 8) — p(d — 8) < /5. Observe
that

wlp(b) ~ ula)] = Hm f+::[arctan

y0 Y7

bt a— I
— arctan

0 < arctan <m
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for all real £ and that

b —t — ¢ b —
arctan 2 }’( a}

- arctan = arctan
I

when a — ¢ and b - ¢ have the same sign. Note also that

dt @
l+t2gfoa’tgx

@
arctan x = fo

when x > 0, It follows that

1 o0 b - a—
]lu(b) — ula) — ;f:oo [arctan 5 f arctan 5 t:la!"u(t)J

1 b — ¢ —f
< - f w[arctan — arctan :|d,u,(t)
(i J J

1
+ - fb[w — arctan
T
1 -t —
+ - fﬁ [&rctan
H Y

a
— arctan
2¢ 1 ry b —a)
4= t
= 5 + gl AL amy2 oy Py — du(t)

b —¢ a -t
—+ arctan

]dﬂ(f)

]du(t)

1 ro—s
+__

T Ja+d

[71' — 2 arctan ;}a’,u(t)

26— a)
FT @ ne—g

1 pa-s
-+ - f “™ arctan
qr v 00

=

Ch 1

5 ' o

2{m d
-+ ;(E — arctan}) [p(d) — p{a)] <«

22 e o) e 6 = duty
vyt a— (b — 8 | w3t (a— (b — 0

when y is so small that each of the last three terms is at most €/5. The

theorem follows.

4. POISSON REPRESENTATION

The Phragmén-Lindeléf principle and the Stieltjes inversion formula
are used to obtain the Poisson representation of functions which are analytic

and whose real parts are nonnegative in the upper half-plane,
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Th 4
eM 4 If f(z) s analytic and has a nonnegative real part in the
HEORh lf_plane, then there exists a nonnegative number p and a non-
upper 12 function u(s) of real x such that

decreasing
dp(t)

. Y {4+
Rcf(x + ‘T’})) :Py+;f_w m

Proaf of Theorem 4. By Problems 2 and 3,
o Re If -}- ie)di
Ref(e+ i) =plap + 2 [0 T 00

fory > 0 when € = 0, where #{¢) s a nonncgative constant. Since

or

ple) = lim Re f(»y -+ i€)fy = lim Re f(iy) fy
Py =00

by Problem 4, p(€) = p is independent of e. In terms of

= [P Reflu + io)a,

the representation becomes
Y [t du (5

Reflzhi)) =+ 2| T i
It follows that the numbers F’w (1 -+ &)~y (8) are bounded inde-

_ .pcndcntly of €, 0 < € < 1. Since
pela) — m&@sﬂ+ﬁfﬂwa@m

ad since g (—a) <0 < p (e} for all @ > 0, the numbers (. (a}) and
‘(jt,(—a)) are bounded independently of €, 0 < € <C 1, for each fixed a. By
the Helly sclection principle, there exists a decreasing sequence (e,} of
positive numbers such that p(x) = lim ,ue(x) exists for all real x as ¢ W 0
irough the sequence (¢,}. The limit u{x) is a nondecreasing function of

ﬁ d(t) v duft)
——~——-———mlxmj e
- O R N Ty RN
ff"O__)>0and—oo<a<b< oo, Since

dp(t)

. J b
Re f(z i) =gy -I-;LW,
it follows that

ket 2042 [
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By the arbitrariness of @ and 5,

Re/(z) 20 +2 [

Clonsider the function

. lj
g(z)“_fﬁz'?-;i co TRl — 2

dp(t)
(£ — x)% 5 ’

oo 1 b 2% du(d) i ij,m dult)
qid—w b -2

which is analytic and has a nonnegative real part for y > 0. Since
dp(t)
t - x)z _f,_'y!a ’

Ref(z) = Reg(z) for y > 0. The function 4(z) = f(z) — g(z) is therefore
analytic and has a nonnegative real part in the upper half-plane. If z and &
are points of continuity of u(x}, a < 4, then

Regl + i) =py+2 [

hmf Re b{x + de,)dx = lim f Re flx + de,}dx — l:mf Re g(x + te,)dx

k) -+ oo NG

= [u(8) — p(@)] — [p() — p{g)] =0

by the definition of p(x) and the Stieltjes inversion formula. The same
conclusion follows for all  and & since any interval (a, b} is contained in an
interval (¢, ) whose end points are points of continuity of gu(x}. Since
p = lim Re g(iy}/y as y — co by Problem 4, we obtain lim Re A{y) [y = 0

as y — oc. By Problems 2, 3, and 4,
Re it dt

Re h{z + de) = f!-w e I +z€)

(£ — x z . _y

fory > 0ife> 0. If —c0 < a < b < oo,

it
fReh(H et L " Re bt + ic)ds
E—x)% 4 9% T

where Iimf Re it + ie,)dt = 0 as n — oo, It follows that

Re Az} = lim

P

l})j an Re At - de,)dt L Y rwReh(t + ien)dtj}
Y ARt iy s Tl

¥ x, and x, arc points in the interval (g, &) and if ¢ lies outside the interval,
[t — x)2 -+ 0¥ f[( — 2)% 22} == |t — 25 — D) (t — 2, — D)2

= |1 — (g — w)f(t — %, — )|
< [1 4 |xg — xy]fmin (|2, — al, |2, — &)1

aw

It follows that

Re f(xy -+ i) << Re h{xy + i) [1 - |%; — x,|/min (I — al, [x, — 8]}]%
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By the arbitrariness of @ and &, ReA(x 4 i) < Re b{x; + ). Equality
holds since x; and x, can be interchanged. This implies that the real part
of #'(z) is zero and that A'(z) is an imaginary constant for » = 0. Since
lim Re A{ip) [y = 0, the constant is zero. So A{z) i1s a constant. Since

lim J:) Re At 4 ie,)di = 0, the real part of the constant is zero and the

theorem follows.

PROBLEM 5. Let p(z) be a function which is analytic and has a non-
negative real part in the upper half-plane. Extend it to the lower half-plane
o that @(Z) = —g(z). Let p be the nonnegative number and let u(x) be
the nondecreasing function of real x such that

S Y 4o d,u'('f)
Re p(x + o) = py + ;Lw TS
when ¥ = 0. Show that

(o -~ z) T oardew (t— z){f — @)

plz) +¢w) p 1 J-m dp(t)

= ,.E., —_

when z and w are not real,

5. CONSTRUCTION OF THE SPACE f(p)

A Hiibert space of analytic functions is associated with any function ¢(z)
which is analytic and has a nonnegative real part in the upper half-plane.

THEOREM 5, Let ¢(z} be a given function which is analytic and has a
.- nonnegative real part in the upper hall-plane. Extend ¢(z) to the lower
" halfplane so that §(2) = - @(z). Then there exists a unique Hilbert space
- £(9), whose elements are functions F(z) analytic in the upper and lower
iihalf-planes, such that

[9(2) -+ @) i — 2]
: I_}:t?fongs to the space for every nonreal number w, and such that
. Plw) = (B, [plt) + §))/mi(@ — ODsen
| Fo‘ every F(z) in L{@). The function [F(z) — F(w)]/(z — w) belongs to
_' L{p) whenever F(z) belongs to £{g), and the identity
0= 0, 160) ~ GBI/ — Bue — (W) — F1f(E — ), e
+ o — BUFU) — F(@)]{t — @), [G(8) — GBI/ — Bep
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holds for all elements F{z) and G(z) of L{p) and for all nonreal numbers
w and §. Let
o I (e dult)
Re p(x + &) =y -+ wam ot
where # is a nonnegative number and p(x) is a nondecreasing function of
real x. Then the transformation

L e d000ul)

> —
wmiv—© f— Z

U: fix)

takes L2(u) isometrically into £{¢}, and the orthogonal complement of the
range of the transformation contains only constants. If U f(x) — F{z) and
if 1 is a nonreal number, then

U f(%)f(x — w) - [F(z) — Fw)]/(z — w).

Proof’ of Theorem 5. The function w(z) = @(z) -} ipz is analytic in the
upper and lower half planes. Since

[-!-oo du(l)

. g
Re p(x - &) Sl To

where p{x) is a nondecreasing function of real x, ¢(z) has a nonnegative
real part in the upper half-plane. We begin by constructing £(y). If f(x)
belongs to L*(u) and has nonnegative values, it determines a nondecreasing

function »(x) of real x such that jb S(du(t) = #{(b) — »(a) whenever
—o0 << a<b < o0,and ¢

f—r-mf(f)dfu(t) _ JM §240)

-0 -z - f—Z
when z is not real. By the Stieltjes inversion formula,

[ F0ydutey = 1im ['Re L f’”"w "

™0 T f—

whenever ¢ and 4 are points of continuity of u(x), and hence also of »{x).
Since any element of L2(x} is a lincar combination of nonnegative functions,
this last identity is valid for any f(x) in L¥(4). From this we see that

[P redu

must vanish for all points of continuity of u(x) if f+w (¢ — 2)"Y(Hdult)
vanishes for all nonreal values of 2. In this case f{x) vanishes almost every~
where with respect to u.
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Th 5
Lot € be the set of functions F (z) defined for nonreal values of z, of the
et
form Py — L el )

aid-—o  f ez

esponding element F(x) of L u). As we have seen, f(x) is

corr
for somME iquely determined by F{z). If we define [t = |flizz0:

1y unt
c;ser?t;:alsy'a Hilbert space. By Problem 5, the identity
the

W) 9w L 4l
(¢ — 2)(

i@ — z)  mid —mi)(f — )

¢+ z and w are not real. It follows that the expression on the
¢ as a function of z for every nonreal number w and that the
lement of L2(p) ks (—mi)"Hx — @)L If F(z) is in £ and if
dmg element of L3(y), then

holds wheneve

Jeft belongs 10
corresponding ¢
f(x) is the cort espon

Bd
(o i ) = [ Ty = o

since the correspondence between LZ(,u ) and £ preserves inner products.
A space £(y) therefore exists, and it is equal isometrically to L. The trans-

formation ® d

; ) == f:ﬂ I (:)_Mi-‘)
o n isometry of L3(u) onto £(y).

If f{x) is in L*(p) and if

: +oo f(6)dp(d)

F(z}::mfw t—z °

F(x) = Flw) _ 1 rvw fOdA()

z—w  midew (t— z)(t — w)

éry nonreal number w. If g(x) is in L%y} and if

() = [ro 8000

s m -z
n We obtain the identity z
BTG — GBI — B))nw — TF() — F(a)1](t — ), C(1) )
+ (o0 = BYFE) — F(a)}(t — a), [G(8) — GBI — B)dee
f«»f Dal x)d,u ) _ [rof 800

—w0 I —

A0
+ "Mw «)(z~5)‘°
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for all nonreal numbers « and 8. If #{z) is in £(y),

o) |2 o] ¥ + Py |IF g PI) A Pw)
F(w)® < IF ()| “m = {F(| w

by the Schwarz inequality. By Problem 4,
lim F(iy) = 0,

A o]
It follows that £(y) contains no nonzero constant.
If p = 0 then p(z) = y(z) and the theorem follows. If p + 0, consider
a ncw Hilbert space whose elements are of the form A - F(z) where F(z)
is in £{yp) and 1 is a constant. Define an inner product in this space corre.
sponding to the norm

1A -+ F R = 122 =p + [F()3,,

Tt is casily verified that this new space is the required space L{p). Uniquenesg
of the space is proved as in SSPS Lemma 11,

6. CHARACTERIZATION OF THE SPACE f(p)
‘Fhe stated properties of f(p) characterize the space.

THEOREM 6. Let L be a Hilbert space whose elements are functions
analytic in the upper and lower half-planes. Assume that [F(z) — F(w)if
(z - w) belongs to £ whenever F(z) belongs to £, for every nonreal number
w, and that the identity

O =), [G@6) — GBIt — B — (F() — F()]/( — o), Gl)
(o — B — F)f(t — o), [G1) — GB/(t — B

holds for all elements F{z) and G{z) of £ and all nonreal numbers « and B
If the linear functional defined on £ by F(z) —» F(w) is continuous for some
nonreal number @, then £ is equal isometrically to a space L{g).

Proof of Theorem 6. We use the identity first when 7(z) = G(z) and when
6 = [§ == w for some nonreal number w. By the Schwarz inequality, '

e — 8] |LF(8) — F{@)](t — w) g <2 WP g NLFE) — Fo)}/{t — w) g

So the transformation F(z) — [F(z} — F(w)]/(z — w) is continuous in the
metric of £, If F(z) is in £, the value of F(2) at w is the value of
Fz) — (& — w)[F{z) — F(w)]/{z — ®) at . Since we assumne that the
linear functional F(z) — F(«) is continuous for some nonreal number «, the
linear functional F(z) — F(w) is continuous for all nonreal numbers w.
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since £ is a Hilbert space, there exists a unique element L(w, z) of £ such
that F(w) = (F(1), L(w, t)); for every F(z) in £. If « and f are nonreal
numbers, [L{a, z) — L(a, f)]/(z — ) belongs to £. If F(z) isin £,

(F(), [L{t, £) — L(a, B)1/(t — B))e = ([F(t) — F(B)1/(t — B), L(=, 1))
= [F(a) — F(B)1/(ex — B) = (F(t), [L(=, £) — L(B, /(& — B))e.

By the arbitrariness of F(z),

[L(a 2) — L{a, B)1/(z — B) = [L(e, 2) — L(B, 2)1/(& — f)-
On the other hand,

L(a, B) = (L(, 8), L(B, ) ) = (L(B, 1), L(w, 1)) = LB, o)~
1t follows that

mi(& — z)L(a, z) = 7i(& — B)L(a, B) + mi(B — 2)L(B, z).

If

@(z) = mi(e — 2)L(&, z) + Imi(& — o) L(a, )
for some nonreal number «, then ¢(z) is defined for nonreal z, ¢(2) = —g¢(z),
and

L(w, z) = [p(2) + ¢@)]/[7i(@ — 2)].

Since the elements of £ are analytic in the upper and lower half-planes,
@(z) is analytic in each half-plane. Since

L(w, w) = ||L(w, 1)]3 =0

for nonreal w, the real part of ¢(z) is nonnegative in the upper half-plane.
The theorem follows from the uniqueness part of Theorem 5.

7. FACTORIZATION OF FUNCTIONS
OF POLYA CLASS

An entire function E(z) is said to be of Pélya class if it has no zeros in the
upper half-plane, if [E(x — )| < [E(x 4 &)] for y > 0, and if |E(x + )]
is a nondecreasing function of y > 0 for each fixed x.

PROBLEM 6. Show that a polynomial is of Pélya class if it has no zeros in
the upper half-plane.

PROBLEM 7, Show that

(1 —2z)exp (Z+%22+"°+%ﬂ) —llgeXp(lzZI”“)—l
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for all complex z, r = 1,2, 3,++-. Hint: Show that the derivative of the

1
function (1 — z) exp (z + L3224+ - z’) is the function

— 2" exp (z—l—%zz—}— —{—;1 zr)
and that the inequality
x—}—%xz—}—--'-i—}x’gx’"“—l—log(l +7)
holds for x > O.

PROBLEM 8. Show that
Lt jab — 1 < (1 +fa— 1A + |6 — 1))
for all complex numbers ¢ and &.

PROBLEM 9. Let (z,) be a sequence of numbers such that y, > 0 for
every n and

1+,
T xh + 05

<
Show that the product

E(z) = f:I (1 — z/z,)e""

converges uniformly on bounded sets if

x

"Rt

Show that the limit is an entire function of Pélya class. Hint: If

a2

=

r
P,,.(Z) = H (1 - Z/‘Zn)eﬁé",
=1
then N

s

IP(2) — P,(2)| < exp{

when r < s.

1efz07] — exp | 3 J2/2,1Y

n=

The Phragmén-Lindelsf principle is used to obtain a factorization
theorem for functions of Pélya class.

THEOREM 7. If E(z) is an entire function of Pdlya class which has a zero
of order r at the origin, then

E(z) = EM(0)(2"[r!)e—0%¢b% IT (1 — z/z,)eM=
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Th7

where a =0, Re b =0, (2,) is the sequence of nonzero zeros of E(z), and

Xn

5 for every n.

b =52+
We show in the proof that the convergence condition

* 1
T <
T A

is satisfied if there are an infinite number of zeros.

LEMMA . If an entire function E(z) is of Pélya class and has a zero @,
then E(2)[(z — @) is of Pélya class.

LEMMA 2. If an entire function E(z) is of Pélya class and has no zeros,
then E(z) = E(0)e=%"¢="* where ¢ > 0 and Re b = 0.
Proof of Lemma 1. Since E(z) is of Pélya class,
\E(x + it — )| < |E(x + ik + )]
when y > 0 and % > 0. For each fixed ,
E(x + ih — 9)|E(x + ih + ) = E(z + ih)[E(z + ih)

is analytic and bounded for y > 0. Consider F(z) = E(z)[(z — ®). Since
@ is a zero of E(z), F(z) is an entire function. Since £(z) has no zeros in the
upper half-plane, neither does F(z). The function

F(z + i) [F(z + i) = [E(z + i) |E(z + it)][(z + ih — @)/(z — ih — w)]

is analytic and bounded in the upper half-plane, and it is bounded by 1 on
the real axis. By the Phragmén-Lindeldf principle, it is bounded by 1 in the
upper half-plane. It follows that

[F(x 4 ih — )| < |F(x + ik + »)|
for y > 0 and & > 0, and this implies that F(z) is of Pélya class.

Progf of Lemma 2.  Since E(z) has no zeros, we can write E(z) = E(0) expF(z)
for an entire function F(z) which has a zero at the origin. Since E(z) is of

Pélya class,
Re F(x + th — ) < ReF(x + ik 4 ¥)

for y >0 and & >0. So if & =0, F(z 4 ih) — F(z + ik) is an entire
function whose real part is nonnegative in the upper half-plane and zero
on the real axis. By Problem 3,

Re [F(z + i) — F(z + ih)] = p()y
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for y > 0, where p(h) is a nonnegative constant. Since the real part of the
entire function F(z + ik) — F(z -+ ih) + ip(k) z vanishes in the upper half-
plane, the function is a constant. Since the second derivative of the function
must vanish identically, F”(z 4 ik) = F"(z + th). When y = 0, we have
F"(x + ik) = F"(x 4 th) for all & = 0. Since F"(z) is then a real valued
entire function, it is a constant. Since F(z) vanishes at the origin, F(z) =
—az* — thz for some numbers a and b, a real. Since

Re [F(z 4 ih) — F(z + th)] = 4ahy 4 29 Re b >0
for # > 0 and y > 0, we must have ¢ > 0 and Re b > 0.

Proof of Theorem 7. By repeated application of Lemma 1, we can write
E(z) = E™(0)(z"/r!)F(z) where F(z) is an entire function of Pélya class and
F(0) = 1. If F(z) has no zeros, the theorem follows from Lemma 2. Other-
wise let Z, be the choice of a zero of F/(z) nearest the origin. By Lemma 1,
F(z)[(1 — z[z,) is of Pélya class. Let fy = xo/(x2 + »2). Since the modulus
of ¢™* is constant on every vertical line, Fy(z) = F(z)e ™?%/(1 — z|z,) is of
Pélya class. If Fi(z) has no zeros, the theorem follows from Lemma 2.
Otherwise continue inductively in the obvious way. At the nth stage, F,(z)
will be an entire function of Pélya class which has value 1 at the origin.
The theorem follows immediately if this function has no zeros. Otherwise
let Z,, be the choice of a zero of ', (z) nearest the origin and let

Foa(2) = F(2)e™*[(1 — z[z,)

where £, == x,/(x2 4+ »2). In the worst case, F,(z) is defined for every
n=1,2,3+-+. Let

n

P,(2) =TT (1 — z/z)eh.

k=0

Then P,(z) is of Pélya class and F(z) = P,(z)F,(z). It follows that
iF'(2)[F(z) = iP,(2)|P\(2) + iF,,1(2)[Fpi(2)

where each term is analytic in the upper half-plane. Since F,,;(2) is of
Pélya class,

Re iF;H(z)/FnH(z) = 0/gylog|F, 1(x + )| =0

for y > 0. It follows that

ReiP,(z)/P,(z) < ReiF'(z)[F(z)
for y > 0. Since
iP,(2) =3 Y D

Re 3
Po(z) =0 (x — x)% + (9 + )*
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and since n is arbitrary,

2 y+ o iF'(z)
2T ooy =R

for y > 0. It follows that

1+,
z x2 _}_).;2
k(2 n
By Problem 9, P (z) = lim P,(z) converges uniformly on bounded sets
and the limit is an entire function of Pélya class. It follows that lim F, (z) =
F(z) exists uniformly on bounded sets. Since 7, (z) is of Pélya class for
every n, ', (2) is an entire function of Pélya class. Since we always chose
z, to be a zero of I/, (z) nearest the origin, F_ (z) has no zeros. The theorem
now follows from Lemma 2 since F(z) = F_(2)P,(2).

<

PROBLEM 10. Let £(z) be a polynomial of Pélya class such that E(0) =1,
and let E(z) = A(z) — ¢B(z) where A(z) and B(z) are polynomials which
are real for real z. Show that

log |E(2)| < x4'(0) 4 yB'(0) + J[A'(0)* — A"(0) + B'(0)?] [=]?

for all complex z.

PROBLEM Il. If a4 > 0 is given, find a sequence (P,(z)) of polynomials,
which have only real zeros, such that e=%" = lim P, (z) uniformly on bounded
sets.

PROBLEM 12. If) is a given number, Re b > 0, find a sequence (P, (z))
of polynomials of Pélya class such that ¢ %% = lim P,(z) uniformly on
bounded sets.

PROBLEM [3. If E(z) is a given entire function of Pélya class, show that
there exists a sequence (P,(z)) of polynomials of Pélya class such that
E(z) = lim P ,(z) uniformly on bounded sets.

PROBLEM I4. Let E(z) be an entire function which has no zeros for
» > 0, such that |E(x — @)| < |E(x - 1y)| for » > 0. Show that
|E(x — 9)| < |E(x + 1)
for y > O unless £(z) and E(Z) are linearly dependent.
PROBLEM |5. If E(z) is an entire function of Pélya class, show that

IE(x + )| is an increasing function of y > 0 for each fixed x unless E(z) =
E(0)¢" for some real number .
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PROBLEM 6. Let E(z) be an entire function of Pélya class such that
|E(x — ip)l < [E(x + )| for » > 0. Show that E(z) = A(z) — iB(z2)
where A(z) and B(z) are entire functions of Pélya class which are real for
real z.

PROBLEM 7. Let E(z) be an entire function of Pélya class which is not a
constant. Show that E'(z) is of Pélya class.

PROBLEM 8. Show that cos z == }(¢** + ¢%%) is of Pélya class. Determine
the factorization given by Theorem 7. By computing the second derivative
of cos z at the origin, show that

) 1 w2

,Zo n+ 1) 8
PROBLEM 19. The gamma function I'(z) is defined by
(2) = [ ettas

for x > 0. Show that z['(z) = I'(z 4 1). Show that I'(z) has an analytic
continuation in the complex plane except for simple poles at zero and the
negative integers. Show that
() = lim [ (1 — tfn)r=tds
N> 00 0
where

zZ(z+ 1) (z+4+n) fon (I — ¢/m)"¢*—'dt = nnl.

Show that the reciprocal of T'(z) is an entire function of Pélya class. Show
that there exists a number ¢ > 0 and a real number y such that

1T(2) = ze%e~o=" T (1 + z[n)e—*/".
1
Show that 2 = 0 and that Euler’s constant y is given by
1
y:lim(l —{——%——[—-H—{——nlogn).
n

n—* o0

Hint: Use the identities
IV(z) 1 ® ( 1 1)
Tzttt
Iz + 1) 1 IM(z)

Fz+1)  z T(z
and the fact that I'(1) = 1.
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g. FACTORIZATION OF FUNCTIONS OF
BOUNDED TYPE

A function F(z), which is analytic in a region, is said to be of bounded
type in the region if F(z) = P(z)]Q(z) where P(z) and @Q(z) are analytic
and bounded in the region and Q(z) is not identically zero.

PROBLEM 20. Show that a function F(z), which is analytic in the upper
half-plane, is of bounded type in the upper half-plane if its real part is
ponnegative in the half-plane. .

PROBLEM 2I. Show that the sum and product of two functions which are
of bounded type in the upper half-plane are functions of bounded type in the
half-plane.

PROBLEM 22. Show that a polynomial is a function of bounded type in
the upper half-plane.

PROBLEM 23. Let (z,) be a sequence of numbers such that y, > 0 for
every n and
In
251
Show that the Blaschke product

=ﬂu—4mm—dm

converges uniformly on every bounded set which lies at a positive distance
from the numbers (Z,). Show that B(z) is analytic and bounded by 1 in
the upper half-plane and that B(z)B(z) = 1. Hint: If

p(z) =inf|l/z — 1/Z,],

show that
1 (1 — 2/z))(1 — 2]2,) — 1] < ex ( 2__ )
" " Pl +58)
If
B,(5) =TT (1 — 2Jz)/(1 — 2/2),
show that =

B,(z) — B — - R
|1B,(2) — By(2)] < exp (p(z) =] +y,i) P (p(z) 2 % + %

when n < 7.
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If a function is analytic and of bounded type in the upper half-plane and
if the function has no zeros in a neighborhood of the origin, then its zeros
coincide with those of a Blaschke product.

THEOREM 8. Let F(z) be a function which is analytic and of bounded type
in the upper half-plane, such that the origin is not a limit point of zeros of

F(z). Then
Fz) = G(2) IT (1 — 2/z,)[(1 — 2/z,)

where zy, zy, z,, -+, are the zeros of F(z) in the upper half-plane, repeated
according to multiplicity, and G(z) is a function which is analytic and of
bounded type in the upper half-plane and which has no zeros in the half-
plane.

If FF(z) has no zeros in the upper half-plane, the product is taken equal
to 1. If there are an infinite number of zeros, then we show in the proof
that the convergence condition

In
Exi 5 <

is satisfied.

Proof of Theorem 8.  Since F(z) is assumed to be of bounded type in the upper
half-plane, there exists a nonzero function Q(z), which is analytic and
bounded by 1 in the upper half-plane, such that Q(z)F(z) is analytic and
bounded by 1 in the upper half-plane. Since the zeros of a nonzero analytic
function are isolated and have finite multiplicities, they are countable. Let
(z,) be an enumeration of the zeros of F(z) in the upper half-plane, repeated
according to multiplicity. The theorem is immediate when F(z) has no
zeros and is easily obtained when F(z) has only a finite number of zeros.
Define a sequence (F,(z)) of analytic functions inductively by Fi{z) = F(2)
and F,,(z) =F,(2)(1 — z/z,)[(1 — z/z,). We show by induction that
Q(2)F ,(z) is bounded by 1 in the upper half-plane. We know that Q(2)I(2)
is bounded by 1. Assume it known that Q(2)F,(z) is bounded by 1. We
show that Q(z)F,,(z) is bounded by 1. By construction,

QD 1a(2) = QAF()(1 — 2/[2,)[(1 — 2[z,,)

where the last factor is bounded on any set which lies at a positive distance
from the point z,. Since Q(z)F, (z) is bounded in a neighborhood of z,
by continuity, it is bounded in the upper half-plane. On the line y = &,
k > 0, it is bounded by

max [[1 — (¢ -+ k) [2,1/[1 — (x + ih)[z,]]
’ — max {1 + 4y, /[(x — x,)® + (k — y,)2}}
= [+ 4,/ (h — 3,071 = (h +2,)It — p,-
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the Phragmén-Lindeldf principle, Q(z)F,1(z) has the same bound in
(he half-plane y = k. By the arbitrariness of z, Q(2)F, ;(2) is bounded by 1
in the upper half-plane.
The theorem follows immediately if there are only a finite number of
geros. In the infinite case, we show that the convergence condition of
problem 23 is satisfied. Write F(z) = B, (2)F,.,(z) where

n

=TI — z/z) /(1 — 2[Z,).

k=1

gince Q@(2)F,;1(2) is bounded by 1 in the upper half-plane, [Q(z)F(z)| <
|B,(2)]; or equivalently,

3

—log [Q(2)F(2) Z log [(1 — 2/2)[(1 — z/z)|

= —%él log {1 + 4 /[(x — %)% + (¥ — 2?1}

By the arbitrariness of z,
2. log {1 + 4/l(x — %)* + (» — )1} < —21log |Q()F(2)].
1

Since Q(z)F(z) does not vanish identically and since log (1 + x) ~ « for
small positive x, it follows that

i I < o

T x5+ (00— )
for some » > 0. Since the origin is not a limit point of zeros of F(z),

2
257

1 x]c ‘[‘)’%

By Problem 23, lim B, (z) = B(z) exists uniformly on any bounded set at a
positive distance from the real axis. The limit function is analytic and
bounded by 1 in the upper half-plane, and F(z) = B(z)G(z) where G(z) =
lim F,(z) uniformly on any bounded set at a positive distance from the
real axis. It follows that G(z) is analytic in the upper half-plane and that
Q(2)G(z) is bounded by 1. Since Q(z) is bounded by I, G(z) is of bounded
type in the upper half-plane. Since the sequence (z,) is chosen so as to
exhaust the zeros of F(z), G(z) has no zeros in the half-plane.

PROBLEM 24. Let F(z) be a function which is analytic and of bounded
type in the upper half-plane. Show that there exists a function Q(z), which
is analytic and bounded by 1 and which has no zeros in the upper half-plane,
such that P(z) = Q(z)F(z) is bounded by 1 in the half-plane.
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9. NEVANLINNA’S FACTORIZATION

These results are used to obtain Nevanlinna’s factorization of functions
of bounded type in a half-plane.

THEOREM 9. Let F(z) be a function which is analytic in the upper half-
plane and which does not have the origin as a limit point of zeros. A
necessary and sufficient condition that F(z) be of bounded type in the
half-plane is that
F(z) = B(z) exp (—ihz) exp G(z)
where B(z) is a Blaschke product, % is a real number, and G(z) is a function
analytic in the upper half-plane such that
. J [+ dlu(t)
Re G == —_

for some real valued function p(x) such that
v R0
[rea<e

Blaschke products are defined as in Problem 23. The last integral is
defined as a supremum of sums

i [ty — pla)l

71 + max (£, &)
taken over all finite subsets £, < t; < * - - < f, of the real line.

LEMMA 3. Let u(x) be a real valued function of real x such that

w |du(t

f+ ldu®| _
—w 1 + t2

Then u(x) = o(x) — »(x) for some nondecreasing functions o(x) and »(x)

such that

) o V(1)
and
J—w1+t2<°o fw1+t2

Proof of Lemma 3. We construct a nondecreasing function 7(x) of real x
such that |u(b) — u(a)| < 7(b) — 7(a) whenever a < b and such that

[ (1 4 #)72dr(t) < 0. The lemma then follows with

o(x) = 3[r(x) + u@®)] and v(x) = §l7(x) — p@)].

If ¢ > 0, define
7(a) = sup D, [u(te) — plle1)l
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where the supremum is taken over all partitions 0 = ¢, < t;, <+ <{. =@
of the interval (0, ¢). For any such partition,

S Iut) — )l = (1 + ) 3§ ”fjn; /Ztit’“"%

<14 a) ff: (1 + &)~ [du(y)].

Therefore 7(a) << co. Obviously 7{(a) is a nondecreasing function of a > 0.
Let 7(0) = 0. Define

—r(—a) =sup 3 |p(t) — ultes)l
where the supremum is taken over all partitions —a =ty < t; <+ ++ <{, =
0 of the interval (—a, 0). Then 7(x) is a nondecreasing function of real x.
IfO0<a<band f O=uy <oy < " <uy=a, a=0,<<v, <+ ++<
v, = b, then

r

2 lp(u) — ple_p)| + Z [(v;) — w(v_)| < 7(b)

1

by the definition of 7(b). Since the partition of (0, a) is arbitrary,
(@) + 2 () — plon)] < (8).
1

Therefore sup X |u(v;) — (v, ;)| < 7(b) — 7(a) where the supremum is
taken over all partitions of (4, b). We show that equality holds.

If € > 0 is given, choose a partition of (0, 8) of the form 0 = u, <
Uy << <up=a,a =10y <v; <<*** <<v, =b, so that

g’ () — gl o)| + z (o) — p(oy)] = 7(b) — .

This is possible by the definition of 7(6) since the insertion of the point a in
the partition does not decrease the corresponding sum. Since

Zlﬂ(u — pluy)| < 7(a),

we have i [u(v;) — p(v;—1)] = 7(b) — 7(a) — e. Since € is arbitrary,

7(b) — 'r(a)I: sup X |u(v;) — p(v; 1)} where the supremum is taken over
all partitions of (4, #). A similar argument will show that the same formula
holds when @ < & < 0. It then follows in an obvious way for unrestricted
numbers a < b. By choosing the trivial partition of (a, 4), we find in partic-
ular that [u(b) — w(a)] < 7(8) — 7(a). We now show that

fb dr(3) fld'u(t
a ]l - g2 al + 22
for —c0 < a < b < o0.
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Ifa=1t, <t <+ <<t =2bh, then

| (t) — w(tin)

|
1 + max (2, £3)

Loty — T(bea)
; I + max (£2_,, )

rory dr(t) » dr(t)
< ¥ < .
——gftk—11—§—t2_ al+t2
Since the partition of (g, b) is arbitrary,

fb |[du ()] < [° dr(t)
el + 2 Jal 47

A

E

To obtain the reverse inequality, let € > 0 be given. Choose § > 0 by the
uniform continuity of (I + x2)~2on (a, 6) so that [(1 4 %)~ — (1 + )7 < e
whenever |x — ¢| < 6 and x and ¢ belong to (g, b). Ifa =1, <4 <--+ <
{, = b is a partition of (g, b) of mesh at most J, then

o |du(t) d
f 1/1;2#2]“1/—1:2

|du ()]
_thk 11 4+ max (£2_,, 13)

Z tk) ( kvl)

1 -+ max (i2_,, 2

=3[ T ) — o)

PERES I S 2
v dr(2)
= |, i e[7(6) — 7(a)].

The desired identity now follows from the arbitrariness of e. Since a and &
are arbitrary,

to dT(8) e [du(d)]
f~ool+t2_f—oo e =%

Proof of Theorem 9, the necessity. By Theorem 8, F(z) = B(z)L(z) where B(z)
is a Blaschke product and L(z) is an analytic function which is of bounded
type and has no zeros in the upper half-plane. By Problem 24, L(z) =
P(2)/Q(z) where P(z) and Q(z) are analytic functions which are bounded
by 1 and have no zeros in the upper half-plane. We can therefore write
P(z) = ljexp V(z) and Q(z) = 1]exp U(z) where U(z) and V(z) are analytic
functions whose real parts are nonnegative in the upper half-plane. By
Theorem 4 there exist nonnegative numbers p and ¢ and nondecreasing
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Th 9
functions o(x) and »(x) such that

. w0 do(t

dy(t)
o (t — x) —|—y2
for > 0. Let h=p—gq and let G(z) =ihz + U(z) — V(z). Then
F(z) = B(z) exp (—ihz) exp G(z) and
ReG(x + i) = —hy + Re U(x+iy) — Re V(x + o)
)’J+oo _ zfm dv(t)
t—x + 2 wl-w (I — x)% 2
yf _du()
@ (t— x)? -+ 2

where u(x) = o(x) — w(x). If {; <t < -+ <4, is a finite subset of the
real line,

ReV(x+w)~qy+yf

glﬂ(tk — (tpq) i o(t 0(b1) i v(h) — v(4q)

1 + max (#_,, t,c T 1 —|— max (tz_l, £2) T 1 + max (2_,, %)

400 dU(t) +o0 d"/(t)
=/ 1+,;z+f_w R

Proof of Theorem 9, the sufficiency. Since h is real, we can write h =p — ¢
where p and ¢ are nonnegative. By Lemma 3, u(x) = o(x) — v(x) where
o(x) and »(x) are nondecreasing functions of real x such that

f_*;" (1 + #)~1do(t) < oo and fj;" (1 + &)~1dv(t) < oo.

Let U(z) and V(z) be a choice of functions which are analytic in the upper
half-plane such that

do(t
. ® dv(t
Re V(x+?y):qy+£fjw (t~:)(2)—}—y2

for y > 0. (See the proof of Theorem 2.) Choose the arbitrary constants in
these functions so that G(z) = ikz + U(z) — V(z). Let P(2) = lexp V(z2)
and Q(z) = lfexp U(z). Since the real parts of U(z) and V(z) are non-
negative in the upper half-plane, P(z) and Q(z) are bounded by 1 in the
half-plane. Since F(z) = B(2)P(2)/Q(z) where B(z)P(z) and Q(z) are
analytlc and bounded by 1 in the upper half-plane, F(z) is of bounded type
in the half-plane.
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PROBLEM 25. Show that
1= [z]zfn 4y sin? 0 40
27 Jofef

— z? [0 — Zz|?

for [z| << 1 and y > 0. Hint: See the proof of Theorem 1.

10. FORMULAS FOR MEAN TYPE

In work with functions of bounded type, it is frequently necessary to refer
to the number A which is associated with F(z) by Theorem 9. There is no
accepted name for this number in the literature. It is however closely
related to the concept of exponential type, and we will call it the mean type
of F(z) in the upper half-plane. An analogous concept of mean type can be
made for functions which are of bounded type in the lower half-plane y < 0.
An entire function is said to be of exponential type if

o log IF(2)]
1M SUp ———s
2] = lzl

This limit is then taken as the definition of the exponential type of F(z). By
a theorem of M. G. Krein, an entire function is of exponential type if it is
of bounded type in the upper and lower half-planes. In this case the
exponential type of the function is equal to the maximum of its mean types
in the upper and lower half-planes. Thus mean type is a generalization of
exponential type to functions which are not necessarily entire. Two useful
formulas for mean type are known. One of these gives mean type as an
average radial limit in the upper half-plane. The second formula shows that
mean type is determined purely by what happens on the imaginary axis.

THEOREM 10. In Theorem 9,
k= lim (2fm)r f " log |F(r¢)| sin 0 df

and
A = lim sup y~1 log |F(iy)].

¥—> o
These formulas have obvious proofs when F(z) has no zeros. The following

lemmas are used to show that the presence of the Blaschke product has a
negligible effect on the limits.

LEMMA 4. Let F(z) be a function which is analytic and bounded by 1 in
the upper half-plane and which does not vanish identically. If
b = lim inf (2/m)r2 [ log |[F(re)| sin § df

then 2 > — oo and F(z) exp (thz) is bounded by 1 in the upper half-plane.
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(EMMA 5. Let F(z) be a function which is analytic and bounded by 1 in
the upper half-plane and which does not vanish identically. If
h = lim sup y~* log [F ()],

Yy o

then £ > — oo and F(z) exp (ihz) is bounded by 1 in the upper half-plane.

LEMMA 6. If B(z) is a Blaschke product and if % is a real number such that
B(z) exp (ihz) is bounded by 1 in the upper half-plane, then £ > 0.

Proof of Lemma 4. If € > 0 and p > 0, the function F(z +- i€) exp (—ipz) is
analytic in the upper half-plane, it has a continuous extension to the closed
half-plane, and it is bounded by 1 on the real axis. By the proof of the
Phragmén-Lindeldf principle, the inequality

log |F(z + i€) exp (—1p2)|
a® — |z|? fﬂ 4ay logt |F(ae®® + ie) exp (—ipae'®)| sin 0 dO
0

—i0

<
2

lae®® — z|2 |ae=®® — 2|2

holds for |z| << a and » > 0. By Problem 25, the inequality can be written
log [F(z + 1€}

<
21

By the arbitrariness of » and Fatou’s theorem
y »

a® — |z|? fﬂ 4aqy max {—pa sin 0, log |F(ae® - i¢)|} sin 0 40

0 lae®® — z|? |ae~?" — Z|2

2 — |z]? J*" 4ay log |F(ae® + i€)| sin 6 d6

log |F(z + ie)| <2
27

0 |ae® — z|? |ae=® — 2|2

Let € X 0. Again by Fatou’s theorem,

log [F(2)] <

a® — |z|? fﬂ 4ay log |F(ae®®)| sin 0 df

27 0 |ae®® — z|® [ae® — 2|2

for |z] < a and y > 0. Let a — oo with z fixed. If |z/a| < ¢ where € < 1,
then

(1= (1 + o) log [F(2)| < (pfm)at [ log |F(as®)] sin 6 db.
By the arbitrariness of @ and ¢, log |[F(z)| < hy.

Proof of Lemma 5. Explicit proof is restricted to the special case in which
F(z) is continuous in the closed half-plane. The general case follows on
considering F(z +- ie) where ¢ > 0. The lemma is immediate if & = 0.
If b < 0, consider any number ¢ > 0 such that & < —a. By the definition
of h, y~tlog|F(iy)] < —a for large values of y. For these values of EA
¢ |F(iy)| < 1. Since F(iy) is bounded by 1, there exists a number M > 1
such that |F(iy)| < Me=* for y > 0. We use this inequality to obtain a
rough estimate of F(z) in the upper half-plane.
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When y > 0, let vz be the choice of square root which lies in the first

quadrant. Then B
G(z) = M2F(Vz) exp (—iaV z)

is analytic in the upper half-plane, it has a continuous extension to the closed
half-plane, and it is bounded by 1 on the real axis. Since I (V' 2) is bounded
by 1 and since

hrnr—lf Vr sin (30) sin 6 d0 = 0,

r—rco
we obtain

lim 1 f log™ |G(re™)| sin 0 dO = O

7> 0

By the Phragmén-Lindels{ principle, G(z) is bounded by 1 in the upper
half-plane. It follows that F(z) exp (—iaz) is bounded by M in the first quad-
rant. The same argument applied to F(—z) will show that F/(z) exp (—iaz)
is bounded by M in the second quadrant. So F(z) exp (—iaz) is bounded
by M in the upper half-plane. But the function is continuous in the closed
half-plane, and it is bounded by 1 on the real axis. By the Phragmén-~
Lindelsf principle, it is bounded by 1 in the upper half-plane. The lemma
follows by the arbitrariness of a.

Proof of Lemma 6. 1L B(z) = I (1 — z/z)](1 — z[Z), let

B,(2) = I (1 — z/z)[(1 — z[Z).

kE>n

By the convergence of the product for B(z), lim B, (z) = 1 as n — c0. Since
B(z) = By(2)(1 — 2[z))[(1 — z[z))

and since B(z) exp (thz) is bounded by 1 in the upper half-plane,
B,y(z) exp (ihz) is bounded in the upper half-plane. If e > 0, then
By(z + i€) exp (¢thz) is bounded in the upper half-plane and continuous in
the closed half-plane. By the proof of Theorem 8, the function is bounded
by (e -+ 31)/|e — ;| on the real axis. By the Phragmén-Lindelsf principle,
the function has the same bound in the upper half-plane. By the arbitrari-
ness of ¢, B;(z) exp (ihz) is bounded by 1 in the upper half-plane. Continue
inductively in the obvious way. Since B, (z) exp (ihz) is bounded by 1 in
the upper half-plane for every n, exp (ihz) is bounded by 1 in the upper
half-plane, and 2 = 0.

Proof of Theorem 10. By the proof of Theorem 9, we can write

F(z) = B(z) exp (—ihz) P(2)[Q(2)
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where P(z) and Q(z) are functions which are analytic and bounded by 1 in
the upper half-plane, which have no zeros in the half-plane, and which
satiSfY

do(t)

—log |Q(x + )| == [*7 m

—log |P(x + )| yfw(tmx T

for some nondecreasing functions ¢(x) and »(x). By Lemmas 4, 5, and 6,

0 = lim (2/m)r1 [7 log | B(r¢'%)| sin 0 do
and
0 = lim sup y~* log [B(%)].

y—*oo
The theorem follows once we show that

0 = lim (2/m)r" 1f log |P(re®)| sin 6 d

and
0 = lim y~ log | P(iy)]

Y0

and that the same formulas hold with P(z) replaced by Q(z). The second
of these formulas is true by Problem 4. The first formula now follows by
Lemma 4.

PROBLEM 26. If B(z) is a Blaschke product, show that
lim f*“" (1 + #)log [B(t + ie)|dt = 0.
enp VT
Hint: 1f B ,,(z) is defined as in the proof of Lemma 6, show that
7log |B, ()| < liminf [* (1 4+ )7 log |B(: + ie)lds
AN —®
for every n.

PROBLEM 27. Let F(z) be a function which is analytic and of bounded
type in the upper half-plane. Assume that |F(z)| has a continuous extension
to the closed half-plane. If u(x) and G(z) are defined as in Theorem 9,
show that

. [ .
p(8) — w(a) =Tim ["log |F(x + iy)|dx
oY e
whenever a and 4 are points of continuity of u(x), ¢ < b. Show that

u(t) — wla) < [ log|F(D)a
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whenever a < b and that equality holds if |F(x)| # 0 for a < x < b. Show
that
b b
[ 11og 1R llat < [* 1au(o).

Show that
=2 J-+w log |F )|dt

(t — x)% 4 »?
for y > 0 and that equality holds if [F(x)| % 0 for all real ».

ReGlx +1y) <

The mean type has been defined only for functions which are nonzero
in a neighborhood of the origin. If a function F(z) is analytic and of bounded
type in the upper half-plane, then the mean type of F(z 4 i¢) is defined for
every positive €, and it does not depend on e. This number is equal to the
mean type of F'(z) if the origin is not a limit point of zeros of F'(z). Otherwise
we take it as the definition of the mean type of F(z). The mean type of the
function which is identically zero is taken to be — co.

PROBLEM 28. Let F(z) be a function which is analytic and of bounded
type in the upper half-plane. Show that the mean type of F(z — a) is equal
to the mean type of F(z) for every real number a.

PROBLEM 29. Let F(z) and G(z) be functions which are analytic and of
bounded type in the upper half-plane. Show that the mean type of F(z)
G(z) does not exceed the maximum of the mean types of F(z) and G(z).
Show that the mean type of F(z)G(z) is the sum of the mean types of F(z)
and G(z).

PROBLEM 30. Show that a function which is analytic and has a non-
negative real part in the upper half-plane has zero mean type in the half-
plane if it does not vanish identically.

PROBLEM 3l. Show that a nonzero polynomial has zero mean type in the
upper half-plane.

I1. CONDITIONS FOR BOUNDED TYPE

The following condition for bounded type is often used.

THEOREM 1. Let F(z) be a function which is analytic in the upper
half-plane, such that {F(z)| has a continuous extension to the closed half-
plane. Then F(z) is of bounded type in the half-plane if

fj“" (1 + 2)=2 log+ |F(t)]dt < oo,
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if
lim inf =2 [" log* |F(r)| sin 0 d0 = 0,

=0

and if
lim sup y~* log [F(y)| < oo.
Yoo
Proof of Theorem 11. By Theorem 2, there exists a function Q(z), which is
analytic and has no zeros for y > 0, such that

f+oo logt |F(2)|dt
(t — x)2 -+ »2
for y > 0. The function Q(z) is bounded by 1 in the upper half-plane,

|Q(2)| has a continuous extension to the closed half-plane, and |1/Q(x)| =
max (1, [F(x)]) for all real x. Let % be the choice of a real number such that

~log |Q(x + )]

k> lim sup y~* log [F(y)]|.
Yoo
Then the function P(z) = Q(z)¢"**F(z) is analytic in the upper half-plane,
|P(z)| is continuous in the closed half-plane, and |P(x)| < 1 for all real x.
Since
= lim y~ log |Q(D)]

Yy

by Problem 4, we have
lim sup 7 log |P(1y)| < 0.
Y0
It follows that P(z) is bounded on the imaginary axis. Since Q(z) is bounded
by 1, the hypotheses imply that

lim infr— Zf log* |P(re®)| sin 6§ 4 = 0.

7o

When y > 0, let vz be the choice of square root which lies in the first

quadrant. Then P(Vz) is analytic in the upper half-plane. Its modulus
is continuous in the closed half-plane and is bounded on the real axis. It
follows from the last written limit that

lim 1nfr_1f log* |P( Vet =) | sin 0 df = 0.
By the Phragmén-Lindelsf principle, P(V z) is bounded in the upper halt-
plane. In other words, P(z) is bounded in the first quadrant. The same
argument with P(z) replaced by P*(—z) will show that P(z) is bounded
in the upper half-plane. But |P(z)] is continuous in the closed half-plane and
is bounded by 1 on the real axis. By the Phragmén-Lindeléf principle,
P(z) is bounded by 1 in the upper half-plane. The theorem follows.
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PROBLEM 32. Show that, for y > 0,

(zjww L£(0) 1t f 2] IfPra

o (8= %) 4 57 wU—xV+J

if f(x) is a Borel measurable function of real x. Show also that Jensen’s
inequality

LR =
holds for y > 0. Hint:
log x = fl 1di = lim (& — 1)/h.

A

12. CAUCHY’S FORMULA IN A
HALF-PLANE

The bounded type theory is used to establish Cauchy’s formula in the
upper half-plane.

THEOREM 12. Let f(z) be a function which is analytic and of bounded
type in the upper half-plane, and which has a continuous extension to the
closed half-plane. Assume that the mean type of f(z) is not positive and that

fj: [f()]2dt < co. Then
omif(z) = [1° (t — ()t
for y > 0 and
0= ["" (1 — 27 (1)
for y < 0. °
Proof of Theorem 12. By Problem 27 the hypotheses imply that

y J’+oo log [f()|de

log [f(x + »)] =57 1

for » > 0. Since the inequality
w 1 t)|dt © t)|dt
2 o TG (2 LI )
o = A4 o ()
holds by Problem 32, we obtain

v

@ d
vw+@nggﬁ;6%%%i?
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fory > 0. By the proof of Theorem 2, there exists a function g(z), which is
analytic in the upper half-plane, such that

LS ()14

Reglx +9) == m

for > 0. Then |f(x + ©)] <Reg(x +1iy) for y> 0. Therefore the
function g(z) — f(z) is analytic and has a nonnegative real part in the upper
half-plane. By the proof of Theorem 2, Re ¢g(z) has a continuous extension
to the closed half-plane and | f(x)| = lim Re g(x + &) as_y \ 0 for all real x.
gince f(2) has a continuous extension to the closed half-plane, Re [¢(z) —

(z)] has a continuous extension to the closed half-plane and is equal to
|f(x)| — Re S(x) on the boundary. By Problems 2 and 3, there is a number

p = 0 such that
Relg(z) —f()] = + 2 [+ LN —ReSO)

(¢ —2)" 42
for y > 0. For the same reasons there is a number ¢ > 0 such that

2 frol/ LA RS,

Ly Refg(z) +f(z2)] =gy + = (t— x)2 + 52

for y > 0. By the definition of g(z), we can conclude that p = ¢ = 0 and
that
J f Ref (t)dt

Reflet9) = w (8 — x)? 4 52

for » > 0. Since the functions g(z) -+ if(z) and g(z) — if{z) are analytic in
the upper half-plane and since the real parts of the functions are non-
negative, the same argument will show that

o Reif(t)d
Reif(e+9) =2 [ =00

for y > 0. It follows that
_ 7 :
f ® (t +y

— (i) fj: (6 — 2 () dt — @mi) [ (¢ — 2 (et

for y > 0. But the first integral represents a function analytic in the upper
half-plane and the second integral represents a function whose complex
conjugate is analytic. But if a function and its conjugate are both analytic,
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then the derivative of the function vanishes identically and the function is a

constant. Since J e (¢t — 2)7Y(t)dt is a constant for y > 0 and since
—00

2 @ = ayaf < [* ol [** 16— el-sa < () [7 ) 10) P,

the integral vanishes identically.

13. FACTORIZATION OF POSITIVE
FUNCTIONS

If F(z) is any entire function, define F*(z) = F(2). Note that F*(z) is
also an entire function and that it coincides with the conjugate of F(z) on
the real axis. If an entire function F(z) is real for real z, then F(z) coincides
with F*(z) on the real axis, and hence, by analytic continuation, in the
complex plane. Thus an entire function F(Z) is real for real z if, and only if,
F*(z) = F(z). If an entire function P(z) is of the form P(z) = Q(2)Q*(z2)
for some entire function @(z), then the values of P(z) are nonnegative on
the real axis. The converse is true if the zeros of P(z) are sufficiently near
the real axis.

THEOREM [3. Let P(z) be an entire function which has nonnegative
values on the real axis and which does not vanish identically. Let (z,) be
the zeros of P(z) in the upper half-plane, zeros repeated according to
multiplicity. If
In
25355

then P(z) = Q(z)@*(z) for some entire function @(z), which has no zeros
in the upper half-plane, such that |Q(x — )| < |Q(x -+ iy)| for y > 0.

Proof of Theorem 13. By Problem 23 the Blaschke product
B(z) =TI (1 — 2/z,)/(1 — z/z,)

converges. Since the zeros of B(z) are zeros of P(z), the function F(z) =
P(z)[B(z2) is entire. Since P*(z) = P(z), the nonreal zeros of P(z) occur in
conjugate pairs. It follows that the nonreal zeros of F(z) have even multi-
plicities. Since P(z) is nonnegative on the real axis, its real zeros have even
multiplicities. Therefore all zeros of F(z) have even multiplicities, and we
can write F(z) = Q(z)? for some entire function (z). Since the zeros of
B(z) exhaust the zeros of P(z) in the upper half-plane, Q(z) has no zeros in
the half-plane. Since P*(z) = P(z), since B*(z)B(z) = 1, and since B(z)
is bounded by 1 in the upper half-plane, |Q(x — )| < |Q(x 4 )| for
» > 0. By construction, £(z)* = [Q(z)Q*(2)]2. Since P(z) and Q(z)Q*(z)
are nonnegative on the real axis, they are identical in the complex plane.
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14, CONDITIONS FOR POLYA CLASS

The next result is a method for proving that a given entire function is of
Ppélya class.

THEOREM 4. Let E(z) be an entire function which has no zeros in the
upper half-plane, which satisfies the inequality

1E(x — &)| < |E(x + »)]

for y > 0, and which has value one at the origin. Let log £(z) be defined
continuously in the upper half-plane so as to have limit zero at the origin.
Then a necessary and sufficient condition that E(z) be of Pélya class is that

Rei[log E(2)]/z = 0
for y > 0.
Proof of Theorem 14, the necessity. By Problem 13 there exists a sequence
(E,(z)) of polynomials of Pélya class such that E(z) = lim E,(z) uniformly

on bounded sets. Since £(z) has value one at the origin, we can choose the
approximating polynomials to have value one at the origin. Since

log E(z) = lim log E (z)

7+ o

for y > 0, it is sufficient to prove necessity in the case that E(z) is a poly-
nomial. In this case

E(z) = (1 — z[@,) - - (1 — z[®,)

where w,, - * -, w, are nonzero numbers which lie on or above the real axis.
Since

log E(z) = log (1 — zJi) + - + log (I — 2/,),

it is sufficient to prove the theorem in the case that E(z) = 1 — z[@ is a
linear function. It remains to show that the expression

Rei[log (1 — z/®)]/z

is nonnegative when z is in the upper half-plane and w lies on or above the
real axis. To see this, write w = pe’® where 0 < ¢ < 7. Since

0/0p Rei[log (1 — ze?/p)]/z = —(sin ¢ + y/p)/|z — @®|* < O,

the expression decreases as p increases for any fixed z and @. Since the
expression has limit zero as p — <0, it is positive for all p > 0.
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Proof of Theorem 14, the sufficiency. Define
p(x) = lim Reilog E(x + i)
¥ 0

when E(x) # 0. Since the function is differentiable at all such points, since
¢'(x) = lim 0/dy log |E(x + )],
YN0

and since |E(x — )| < |E(x + &)] for » > 0, ¢'(x) = 0 whenever ¢(x)
is defined. If % is a real zero of E(z) of order r, then @(h+) and @(h—)
exist and @(k+) — @(h—) = 7r. It follows that @(x) .is a nondecreasing
function of real x. Since @(x) vanishes at the origin, p(x)/x = 0 at all points
of continuity. By the Poisson representation, Theorem 4, there exists a
number ¢ > 0 such that

log E(z) Y [+o  @(i)/rdi
Re: ; may+—fww P EEeT

for y > 0.

If E(z) has no zeros, then log E(z) is an entire function, and E*(z)/E(z)
is an entire function which has no zeros, which is bounded by one in the
upper half-plane, which has absolute value one on the real axis, and which
has value one at the origin. By Nevanlinna’s factorization, Theorem 9,
E*(2)[E(z) = exp (2ihz) for some number £ > 0. The function E(z) exp (ihz2)
is real for real z, ¢(x) = Ax for all real x, and

Reiflog E(z)]/z =1 + ay
for y > 0. It follows that there exists a real number & such that

illog E(2)]/z = h + ik — iaz.
The function

E(z) = exp (kz — ithz — az?)
is then of Pélya class.

If E*(z) has a zero wy, then w; # 0 and E(z) = E,(z)(1 — z[i#,) where
E(z) is an entire function which has no zeros in the upper half-plane, which
satisfies the inequality |E;(x — &y)] < |Ey(x + )| for y > 0, and which has
value one at the origin. As we have seen,

@1(x) == lim Re ¢ log Ey(x + &)

¥ 0

is a nondecreasing function of ». Since

Re Iog (1 — z/w1 f+00 [p(t) — @ (D)]/¢
(t— xR
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fory > 0, we can conclude that

log Ey(z yf+oo (1) [t

Re ——-———— i
(t — x)% 4 »?

z

is nonnegative for » > 0. We have seen that such a function E;(z) is of
Pélya class if it has no zeros. In this case it follows immediately that F(z)
is of Pdlya class. An inductive argument will show that E(z) is of Pélya
class if it has only a finite number of zeros.

If E(z) has an infinite number of zeros, let (w,) be an enumeration of
the zeros of E*(z). For every n,

E(z) = E,(2)(1 — z[@,) - (1 — z[@,,)

where E,(z) is an entire function which has no zeros in the upper half-plane,
which satisfies the inequality |E,(x — ©)] < |E, (x + )] for y > 0, which
has value one at the origin, and which satisfies the inequality

Rei[log E,(2)]/z =0
for y > 0. It follows that

Reillog (1 — z[/w;) 4 -+ - 4 log (1 — z[w,)]/z < Rei[log E(z)]/z

for y > 0. When z = i the inequality implies that
S (1 +id, — iw,)lw,f? < oo,
n=1

By Problem 9, the product
F(z) =TI (1 — z/®,)d*

n=1
converges uniformly on bounded sets and represents an entire function of

Pélya class if we choose %, = Re l/w, for every n. It follows that E(z) =
F(z)G(z) where

G(z) =lim E (z) exp (—hyz — -+ —h,2)

n=* 0

is an entire function which has no zeros, which satisfies the inequality
IG(x — B)| < |G(x + iy)] for y > 0, which has value one at the origin, and
which satisfies the inequality

Rei[log G(z)}/z = 0

for y > 0. Since we have shown that such a function G(z) is of Pélya class,
we can conclude that E(z) is of Pélya class.
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PROBLEM 33. If a function F(z) is analytic and of bounded type in the
upper half-plane, if it has no zeros in the half-plane, and if log F(z) is defined
continuously in the half-plane, show that

|z — 2] |log F(2)|/|z + 7]*

is bounded in the half-plane. Hint: Reduce the problem to the case in which
Relog F(z) = 0 for y > 0, apply the Poisson representation, and use the in-
equality

I —i

t— z

|2 —i| + |z + ]

lz — 2

PROBLEM 34. Let E(z) be an entire function which has no zeros in the
upper half-plane and which satisfies the inequality |E(x — )] < |E(x + )]
for y > 0. Show that E(z) is of Pélya class if there exists an entire function
F(z) of Pélya class such that E(z)/F(z) is of bounded type in the upper
half-plane.

PROBLEM 35. If F(z) is an entire function of Pélya class such that £*(z) =
E(—z), show that

E@)] < |E(i|z])
for all complex z.

PROBLEM 36. Let F(z) be an entire function such that F(z) and F*(z)
are of bounded type in the upper half-plane. Show that there exists an
entire function E(z) of Pélya class such that

F(2)F*(2) + F(—=2)F*(—2) = E(2)E*(z),
such that £*(z) = E(—z), and such that
[Fx + &) <[E(x + i)

for all complex z. Show that E(z) can be chosen of bounded type in the
upper half-plane and of mean type equal to the maximum of the mean types
of F(z) and F*(z) in the upper half-plane.

PROBLEM 37. Prove Krein’s theorem that an entire function F(z) is of
exponential type if it is of bounded type in the upper half-plane and if
F*(z) is of bounded type in the upper half-plane. Show that the exponential
type of F(z) is the maximum of the mean types of F(z) and F*(z) in the upper
half-plane.

PROBLEM 38. Show that an entire function of zero exponential type is
bounded in the complex plane, and hence is a constant, if it is bounded on
the real axis.
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pROBLEM 39. Show that an entire function F(z) is a constant if F(z) and
F*(z) are of bounded type in the upper half-plane and if F(z) is bounded on

the imaginary axis.

i5. ANOTHER FORMULA FOR MEAN TYPE

A theorem of Titchmarsh and Valiron evaluates mean type for functions
of Pélya class. The method applies also to certain functions which are not

entire.

THEOREM 15. Let F(z) be a function which is analytic and of bounded
type in the upper half-plane and which has no zeros in the half-plane.
Assume that |[F(x 4- )| is a nondecreasing function of y > 0 for each fixed
x. Then there exists a nondecreasing function y(x) of real x such that

F@)  p e dy()
RezF(z) _ﬂ'f—w (t — %)% -+ »*

for » > 0. The mean type 7 of F(z) in the upper half-plane is given by
7= lim (x)/x.

|- o0

Proof of Theorem 15. Since we assume that [F(x + 4)| is a nondecreasing
function of y > 0 for each fixed #, the real part of iF’(z)[F(z) is nonnegative
in the upper half-plane. By Theorem 4 there exists a nonnegative number
p and a nondecreasing function y(x) of real x such that 9(0) = 0 and such
that

F'(z)
F(z)

_ D [+ dy(t)
_P.y—}‘;f__w —_——(t—x)z T

for » > 0. Since Re iF'(z)[F(z) = py, we obtain

log |F(9)[F(i)| = ip* — b

Rei

for y > 1. Since
lim ytlog |F(ip)| =7 < o
Y00
by Theorem 10, we must have p = 0. Let ¢(x) be a nondecreasing function
of real x, whose values are integer multiples of 7, such that |p(x) — @(x)| <
i for all real . Let G(z) be an entire function of Pélya class, which is real
for real z, such that G(0) = 1 and such that

Re:

G'(z) f+oo do(t)
G(z)  mi-e (=) + "
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for y > 0. Then
J’f+oo h—e®) ,
(t — %)% 4 »2

is an absolutely convergent integral which represents the real part of a
function analytic in the upper half-plane, and

0 (o P(t) — @(t) 7 0 1
el I e oL e M CORSL () o e e
=2 [w<t>—¢<t>]5t.(7t;md‘

f—d—w dyp(f) P(1)]

(t — %)% 4 »?
= Re [iF'(2)[F(z) — iG"(2)]G(2)]

for » > 0. Differentiation under the integral sign is justified by absolute
convergence of the equivalent integral. Integration by parts is permissible
because w(f) — @(f) is bounded. If log F(z) and log G(z) are defined
continuously in the upper half-plane, then

4 f+w 0 St_)sz(i( )2 dt and Re [ilog F(z) — tlog G(2)]

differ by a real constant. Since F(z) can be multiplied by a constant of
absolute value 1 without changing the hypotheses or conclusion of the
theorem, we can restrict explicit proof to the case in which

J f+°° ?)- dt = Re [tlog F(z) — ilog G(z)]

for y > 0. Since |p(x) — @(x)] < $o for all real »,
[Re [ log F(2) — ilog G(2)]] < 3=

for y > 0. It follows that
Re [G(2)[F(z)] =0

for y > 0. By Problems 20 and 30, G(z)/F(z) is of bounded type and of zero
mean type in the upper half-plane. Since we assume that F(z) is of bounded
type and of mean type 7 in the half-plane, G(z) is of bounded type and of
mean type 7 in the half-plane. By Problem 27,

1o log G0t

log [6(x + )] = m + = [ 77 7 s
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Th 15
for y > 0, the integral being absolutely convergent. It follows that
log G(z) + log G(w 1 J+w log [G(t)}
(o — 2) (t — 2)(t — )

when z and w are in the upper half-plane. By the Lebesgue dominated
convergence theorem,

. log G(re*) .

lim ————= = —ir¢’

70 r
for 0 < 6 < . Convergence is uniform in any sector § < 6 < 7 —  where
0 < 6 < 4m. The function i[log G(z)]/z is analytic in the upper half-plane
and continuous in the closed half-plane except for isolated singularities at
the discontinuities of @(x). If 2 > 0 and if 0 < § < 7, then

. (o log G(re™) i 0 . ralog G(ir)
zfo——r————dr-J.6 log G(ae™)d0 ——zfo—r——dr—O
by Cauchy’s formula. In the limit as 6 “x 0 we obtain
a@(x) ey, .log G(y) "
[ T2 de = [ Rei— 5 4 [ 10g 1G(ae) o
It follows that

lim sup — f dt—hms pf

a—* o &~ 0

in log |G(a™)|
a

s,

and similarly for lower limits. Since G(z) is of exponential type by Krein’s
theorem, Problem 37, the integrand on the right has an upper bound. By
Fatou’s theorem,

lim sup - fa(p dt<ﬁ 7sin 0 df = 1.

Since p(x)/x >0,
lim sup - f <P a’t

&= 00

Since g(x) is a nondecreasing function of x,

p(39)

lim sup log2 < 7.

a— 0
From this we see that @(x)/x < M is bounded on the half-line (0, c0). The
set of points x > 0 such that log |G(x)| << —x is a union of disjoint intervals
(u,, v,) such that

121g

dt < oo.

tdt w log™ |1/G(2)|
1+u2 zfnurtz*fo 142
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From this we see that lim v, /u,, = 1 asn-> c0. If 0 < § < =, then
ir 1 G i xis
limf Ma’@:fj 7s8in 0 df = 7 cos o
a—co v a E
by uniform convergence of the integrand. On the other hand,
1 G 20
limf"Mde = [P rsin0do = r(1 — cos 0)
g-s00 ¢ 0 a 0

by the Lebesgue dominated convergence theorem if the limit is taken with
outside the union of the intervals (u, cos &, v,/cos ). For-

log |G(ae®)| - log |G(a cos 6)]

a a

> —1

and the integrand is bounded on this set. It follows that

1 ¢ ?;1r1 i0
1im—fa?i(—2dt=limf‘ Mdezq-
0 ¢

a—»ooa a— 0 a

if the limit is taken with a outside the union of the intervals (,, cos &, v,/
cos §). Butifa < &,

{lrl f;’ p(t))tdt — at JO“ p(t) ]t dt’
< b f” Q) [tdt + (@t — b) fo oL

< 2M(1 — a/b).
It follows that
1 _1 (@
v =lima fo P/t dt.

If s > 1, we have
(s — 1)r = lim o f p(t)/t dt.
@00 e
Since ¢(x) is nondecreasing,
log s lim sup @(a)/a < (s — 1)1 < slog s lim inf ¢(a)/a.
@G>0 &> 00
By the arbitrariness of 5, 7 = lim @(x)/x as x — 4 0. Since the same
conclusion holds with G(z) replaced by G(—z), we have 7 = lim ¢(x)/x as
% — —oo. The theorem follows because the difference w(x) — p(x) is
bounded.



CHAPTER 2

Eigenfunction Expansions

16. CONSTRUCTION OF PALEY-WIENER
SPACES

The theory of Hilbert spaces of entire functions is a generalization of
Fourier analysis. If f(x) belongs to L?(-— oo, -}-00), its Fourier transform
F(x) is the function defined formally by '

2mF(x) = f T it (1) dt.

o0

In general the integral does not converge. But if f(x) belongs to L}(— co,
+ o), the Fourier transform F(x) is a well-defined, continuous function of
real x. The definition of F(x) in the general case depends on Plancherel’s
formula, which states that

2m [ 1F(g) 20 = [*7 [ F(1)12

Since a dense set of elements of L*(— oo, 4+ o) belong to L'(—co, 4 o),
there exists a unique way to define the Fourier transformation in L3(— o,
+ o0) which preserves the Plancherel formula and is consistent with the
Fourier transformation for elements of L1(— oo, - 0).

An example of a function f(x) in L?(— oo, - 00) which also belongs to
LY(— o0, + o0) is one which vanishes outside of a finite interval (—a, 2). In
this case its Fourier transform F(x) can be extended to a function of a

complex variable z by

T gminte (1) d.

The integral is absolutely convergent for all complex z and represents
an entire function. An arbitrary element f(x) of L?(—co, 4 ) can be

43

9mF(z) = f
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approximated by functions vanishing outside of finite intervals. The ob-
vious approximation method gives

27F(x) = lim fj (L) dt

as the definition of the Fourier transform of f(x). Convergence is in the
metric of L?(— co, - c0).

A fundamental theorem of Fourier analysis states that every function in
L*(— 00, 4 c0) can be written as the Fourier transform F(x) of an element
JS(x) of L2(— 00, 4+ 0). An equally fundamental theorem, due to Paley and
Wiener, characterizes those functions in L2(— oo, + 00) which are Fourier
transforms of functions which vanish outside of a given interval (—a, a).
If f(x) vanishes outside of the interval (—a, a), its Fourier transform F (%)
is (equal almost everywhere to) the restriction of an entire function F (z) to
the real axis. It is easily verified that F(z) is of exponential type at most a.
Paley and Wiener show that any entire function of exponential type at most
a which is square integrable on the real axis is the Fourier transform of a
function which vanishes outside of the interval (—a, a). If a is given, the
setofallsuch entire functionsisa Hilbert space in the metric of L3(— w0, 4 c0).
This Paley-Wiener space has interesting special properties.

If F(z) is an entire function of exponential type at most « which is square
integrable on the real axis and if

9nF(z) = f_*: w1 dt
is its Fourier representation, we have in particular
9 F(nm|a) = fja F(t)eminilagy
for integer n. Since the functions (¢=™"%/%) are a complete orthogonal set in

L*(—a, a), we can conclude that

+o0 @
2 [2nF(amfa)|* =20 [* | f(0)%.

By Plancherel’s formula we obtain the identity

+oo &
[22 \F@P = (mja) 3 1FGmfa)

which is meaningful without any knowledge of Fourier analysis. Although
Paley-Wiener spaces were originally obtained by Fourier analysis, it is easier
in many ways to derive the theory of the Fourier transformation from the
theory of these spaces.
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THEOREM 6. The Paley-Wiener space of entire functions F(z) of ex-
ponential type at most @ which are square integrable on the real axis is a

Hilbert space in the norm
+o0
112 = [* 1) .
The function [sin (az — a®)]/[7(z — @)] belongs to the space for every
complex number w, and the identity

sin (at — aw)
7(t — w)

Flw) = fj:: F() dt

holds for every element F(z) of the space.

Proof of Theorem 16. If an entire function F(z) belongs to the Paley-Wiener
space, then

[+ e+ 1P < .
By Jensen’s inequality,

Lemlog L3 IPORYE o 1 o L+ PO

= Y

t .
—© 1 4 2 T dh < oo

ks

It follows that fj:: (1 4 2)"tlog* |F(t)|dt < oo. Since F(z) is of exponential
type, it follows from Theorem 11 that F(z) is of bounded type in the upper
half-plane. By Theorem 10 the mean type of F(z) in the upper half-plane is
at most a. By Cauchy’s formula,

T (¢ — Z)~LetR(f) dt

Qmigi®F(z) = f_
fory > 0 and
a0 ,
0= f_ (t — 2)~16" (1) dt

for y < 0. Since the same formulas hold with F(z) replaced by F*(z2), it
follows that

2mik(z) = fjw (t — 2)~Uiate—iar — g—iatgion) F(p)dt
when z is not real. The formula can be written

w sin (at — az)
F(z) = [ =L F(t)dt.
@ == T
It is valid also in the limit of real z by the Lebesgue dominated convergence
theorem. Butitis easily verified that the function [sin (az — a®)]/[7(z — @)]

belongs to the Paley-Wiener space for every complex number w. We can
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therefore apply the Schwarz inequality in the last identity to obtain
sin (az — az)
m(z — Z)

for every element F(z) of the Paley-Wiener space.
Completeness follows from this inequality. If (F,(z)) is a Cauchy
sequence in the space, then

[#(2)]* < [F]?

sin (az — a2)

F — F(z)|® < |F, — B2 ————

for all complex z. The sequence (F,(z)) therefore converges uniformly on
bounded sets. So the limit function F(z) is entire and

f TR 2t < lim f TN (1|2t < oo
—® n—>c0 ¥ TP
by Fatou’s theorem. Since

|F(2)[? < lim ”anzwz__a_z)

N—> 00 ’”'( — Z_) ’

the limit function F(z) is of exponential type at most a. By Fatou’s theorem
fj‘” |F(t) — F(t)[2dt < lim fj‘” [F(1) — Fy(t) |2,

Since we assume that the sequence (F,(z)) is Cauchy, it converges to F. (2)
in the metric of the Paley-Wiener space.

17. CHARACTERIZATION OF FINITE
FOURIER TRANSFORMS

We use this result to prove the Paley-Wiener theorem.

THEOREM 17. If f(x) belongs to L2(~ 0, -} 0) and vanishes outside of
a finite interval (—a, ), then

2nF(z) = |

-+00

£ (8) dt
is an entire function of exponential type at most « such that
2 [M |F(t) |2t = [ 1 £ 2.

Every entire function of exponential type at most a which is square integrable
on the real axis is of this form,
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proof of Theorem 17, If f(x) = ¢®¥ for —a < & < a, then

O sin (az — aw) _ f‘l o2t gy
m(z — @) —a

pelongs to the Paley-Wiener space. By Theorem 16, the identity

dt = fa ettt )
—a

9 J\—}-oo sin (at — a®,) sin (at — aw,)
w(t — @) 7 (t — wy)

holds for all complex numbers wy and wy. I£f(x) is a finite linear combination
of functions ¢#%, w complex, we can therefore conclude that

— % ite
2mF(z) = [ cof()dr
belongs to the Paley-Wiener space and that

o7 f*“’ (1)]2dt = faulf(t)lzdt.

The same conclusion follows by continuity when f(x) belongs to the closed
span of the functions ¢*% in L*(—a, a). Let AG(a) be the set of functions f/(x)
in L2(— o0, 4 00) which vanish outside of the interval (—a, a) and whose
restrictions to the interval (—a, a) belong to the closed span of the functions
¢®_ The Fourier transformation takes #(a) onto a closed subspace of the
Paley-Wiener space of type a. We show that this subspace is the full space
by showing that its orthogonal complement contains no nonzero element. If
F(z) belongs to the orthogonal complement, then it is orthogonal to
[sin (az — a®)]/[7(z — ®)] for every complex number w. By Theorem 16,
F(z) vanishes identically. To prove the theorem we must show that A(a)
contains any element of L2(— o0, - 00) which vanishes outside of (—a, a).

We show that AM(a) is contained in AG(h) when a < b. If f(x) belongs
to AG(a) and if g(x) is the projection of f(x) in AG(b), then

2mG(2) = [ etg(t)dt = [* e (t)de = 2mP(2)

and

[ 1rord =27 [*2 1P pdt = 27 7 1G (1) 121 = [IREGIA

Since [* [£(t) — g(01&(t)dt = 0, it follows that ffb| F(8) — g(8)|2dt = 0
and that g(x) = f(x) almost everywhere,
We next compute the projection of A(b) in A(a) when a < b. If f(x)
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is the element of AG(6) which is equal to ¢*7 when —b < x < b, then its
Fourier transform is
sin (bz — bw)

e

By Theorem 16, this is the element of the Paley-Wiener space of type b such
that

G(w) = /G(Zf), M\

N\ w(t—1w) /

holds for every element G(z) of the Paley-Wiener space of type . The same

formula holds with 5 replaced by « in the Paley-Wiener space of type a. It
. o  (bz — bib

follows that M is the projection of sm(—z—___i)

m(z — @) m(z — @)

sin (az — aw)

in the Paley-

Wiener space of type a. But is the Fourier transform of the

m(z — @)
element of AG(a) which is equal to €% for —a < x < a. Thus if f(») is the
element of AG(d) which is equal to ¢*% for —b <x < b, and if g(x) is
the projection of f(x) in AM(a), then g(x) = f(x) for —a < x < a. The same
conclusion holds for every element of AG() since the closed span of such
special functions is the full space.

‘We show that JG(8) contains every function in L2?(-- o0, 4 00) which
vanishes outside of (—&, b) by showing that there is no nonzero function
f(x) in L2(— oo, 4 o0) which vanishes outside of (—b&, b) and which is
orthogonal to AG(8). If 0 < a < b, the function which is equal to ¢*® for
—a < x < a and which is 0 otherwise belongs to AG(4) for every complex
number w. Since f(x) is orthogonal to all such functions

[oLr e 4+ f(—neim1de = [* fl)emds = 0.

It follows that f(x)e™® 4 f(—x)e~®¥ is orthogonal to all step functions in
L%(0, b). Since the step functions are dense in L2(0, ), f(x)¢®® + f(—x)e~%®
vanishes for almost all x. By the arbitrariness of w, f(x) vanishes almost
everywhere.

18. L2 FOURIER TRANSFORMATION

The theory of the Fourier transformation in L2(— o0, 4 ) follows from
the Paley-Wiener theorem.

THEOREM 18. If f(x) belongs to L%(— c0, 4 00), then

9mF(x) = lim fj e (1) dt

a—>
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exists in the metric of L2(— oo, + o0) and
%ﬁfww@pw=Jf”u@Pﬁ
Every element of L?(— 0o, 4+ c0) is a Fourier transform.

Proof of Theorem 18.  If 27F,(2) = ﬁ e~ if(t)dt, then F,(z) belongs to the
Paley-Wiener space of type a and

2 [ \B ()Pt = [* 1 f(0) 12k
If ¢ < b, then

2 [M By () — Pt = [ 1reea + [ 1o

Since f(x) belongs to L*(— o0, +-00) and since L*(— 0, -} 00) is a Hilbert
space, I{(x) = lim F, (x) exists in the metric of L2(— oo, -+ o0) as a —> o0 and

2m [ R(t) 2t = lim 2 [* |F,()ds

a2

=lim [* [ = "1 £(0) k.
- The set of elements of L2(—co, 4+ 00) which are Fourier transforms is a
closed vector subspace of the full space. To show that it is the full space,
we must show that there is no nonzero element F(x) of L2(— oo, 4 c0) which
is orthogonal to all Fourier transforms. Since (1 — ¢%%~1%)[(z — )
belongs to the Paley-Wiener space of type a for every complex number w,

e p—tat law

[ F@l—iﬁi_w:a
) —w

When w is in the upper half-plane, we obtain

f+oo F(t)dt _

—w0 [ — w

in the limit as @ — co. Since (1 — ¢~%%“¥)/(z — 1) belongs to the Paley-
Wiener space for every complex number w, a similar argument will obtain
the last identity when w is in the lower half-plane. It follows that

nyroo FE(t)yds 1 f+w F(t)dt I J~+oo F(Hdt
(t — x)2 + »? T 2midw 2 Qmid—o t — z

when » > 0. But F(x) can be written as a linear combination of non-

negative functions which belong to L2(— oo, -- 0). By the Stieltjes inversion

formula, f 'F (t)dt = 0 for all except countably many a and b. It follows

that F(x) vanishes almost everywhere.
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19. FUNCTION VALUES AS INNER
PRODUCTS

A generalization of Fourier analysis is obtained when the Paley-Wiener
spaces arc replaced by more general Hilbert spaces of entire functions, A
Hilbert space of entire functions is associated with any entire function E(z)
which satisfies the inequality |E(x — iy)| < |E(x 4 1)| for y > 0. The
space JC(E) associated with such a function E(z) is the set of all entire
functions F(z) such that

IF1% = [*7 1F@E@Pd < o

and such that both ratios F(z)/E(z) and F*(z)/E(z) are of bounded type
and of nonpositive mean type in the upper half-plane. The Paley-Wiener
space of type a is the space JE(E) in the case E(z) = ¢~9%,

The space JC(E) is a vector space over the complex numbers. An inner
product is defined in the space by

FW), 685 = [ PG B 2.
In working with the space, we will write E(z) = A(z) — iB(z) where A(z)

and B(z) are entire functions which are real for real z. Explicitly these
functions are

A(z) = §E(z) + E*(2)] and B(z) = §[E(z) — E*(2)].

We omit the subscript E from norms and inner products whenever we can

do so without ambiguity. We show that any space Je(E) contains nonzero
elements.

PROBLEM 40. IfJC(E) is a given space, show that
K(w, w) = [B(w)4(w) — A(w)B(w)]/[m(w — ®)]

is a continuous function of w.

THEOREM 19. Let E(z) be a given entire function which satisfies the
inequality |E(x — )| < |E(x - iy)| for y > 0. Then

K(w, 2) = [B(2)A(w) — A(2)B(w)][[n(z — @)]
belongs to J¢(E) as a function of z for every complex number w and

F(w) = (F(1), K(w, 1))
for every F(z) in J(E).
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Proof of Theorem 19.  Since 2mi(w — z)K(w, z) = E(2)E(w) — E*(z)E(®),
where E*(z)[E(z) is bounded by 1 in the upper half-plane, the function
omi(® — z)K(w, z)[E(z) is bounded in the half-plane. Since 27i(@ — z)
is of bounded type in the half-plane, the quotient K(w, z)/E(z) is of bounded
type in the half-plane. The mean type of the quotient is nonpositive because
a bounded function has nonpositive mean type and because a nonzero
olynomial has zero mean type. For the same reasons, K*(w, z)/E(z) =
K(w, z)|E(z) is of bounded type and of nonpositive mean type for y > 0.
When w is not real,
2 f o

I
—00

K(w, )
E(t)

E(t) E(w) —
2mi( — &) E(l)

dt < oo

because

vo|  E(O)E@) P

I omile — 0BG | T
and

| E*OE@) P

I Smi — 0B | <

Ifw is real the integral is finite because the integrand is a continuous function
of ¢ in the interval (w — 1, w 4 1) and because the last two integrals con-
verge when this interval is omitted. It follows that K(w, z) belongs to JE(E)
as a function of z for every w.

If F(z) belongs to J¢(E), F(z)[E(z) is analytic in the upper half-plane
and continuous in the Closed half-plane except for possible singularities at
the real zeros of £(z). If E(z) has a zero of order 7 > 0 at a real point k, then

E(z) = (z — h)"G(z) for some entire function G(z) which has a nonzero
value at £. Since

IFOI2 = [ 1(t — W=F (&) [G(2) 1t < oo

and f::l (t — h)~®*dt = oo for every positive integer k, F(z) must have a
zero of order 7 or more at k. The ratio F(z)]E(z) is therefore continuous at &
and has no singularities on the real axis. By Theorem 12,

F(2)[E(z) = (2mi)=™ [*° (¢ — 2)7F(0) Bt s,
O—f (t — 2)7WF(Q) [E(t)d:

for y > 0. The formulas hold also when F(z) is replaced by F*(z). The four
formulas so obtained imply that F(w) = (F(t), K(w, t)) for all nonreal w.

If w is real, choose a sequence (w,) of nonreal numbers such that w =
lim w,. Then

K(w, x)[E(x) = lim K(w,, x)[E(x)
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uniformly on every bounded subset of the real axis. If —o0 < a << b < o0,

[P 1K, 6 — K, 012 |EQ 2 = lim [* 1Ky, 1) — Koy, O B[t
3 k= a
Since
77 1K (s t) — Ky, 01 |E() 24t
= (K(wy, t) — K(w,, 1), K(wy, 1) — K(w,, 1))
= K(wm wk) - K<wk> wn) - K(wn’ wk) + K(wm wn):
it follows from Problem 40 that
[ 1Ko, 1) — Ky, ) |E(2) -2
< K(w, w) — K(w, w,) — K(w,, w) + K(w,, w,).
Since a and & are arbitrary, K(w, z) = lim K(w,, z) in the metric of J&(E).
It follows that
F(w) = lim F(w,) = lim (F(), K(w, 1)) = (F(1), K(w, 1))
for every F(z) in J8(E).

PROBLEM4I. If(z,)isasequenceofnonzero numberssuch thatlim 1/z, =
0, show that the Weierstrass product

o«

1
P(z) =TI (1 — 2/2,) exp [(2[z,) 4 §(2fz0)* + - -+ 4 = (2]2,)"]

1

converges uniformly on every bounded subset of the plane.

PROBLEM 42. In Problem 41 show that
log [1 -+ [P(2) — 1[] < 2 |z/z,|"
n=1

for all complex z.

PROBLEM 43. Let (x,) be a sequence of real numbers which has no
finite limit point. Show that there exists an entire function S(z), which is
real for real z, and which has the sequence (x,,) as its sequence of zeros.

PROBLEM 44. If J¢(E) is a given space, show that E(z) = S(2)F(2)
where (E,) exists, Ey(z) has no real zeros, and S(z) is an entire function
which is real for real z. Show that F(z) — S(z)F(z) is an isometric trans-
formation of J8(£,) onto JC(E).

PROBLEM 45. Let JC(E) be a given space. If w is a nonreal number,
show that F(z)[(z — w) belongs to J&(E) whenever F(z) belongs to J¢(E) and
vanishes at w. Show that the same conclusion holds for a real number w if,
and only if, E(w) # 0.
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20. ALTERNATIVE DEFINITION OF THE
SPACE J¢(E)

An alternative definition of the space JC(E) uses an explicit estimate in
the complex plane.

THEOREM 20. A necessary and sufficient condition that an entire function
F(z) belong to JC(E) is that

IF@)e = |

-+o0

\F(5)[E@) 2t < oo
and that |F(z)[2 < |F(t) |2K(z, z) for all complex z.

Proof of Theorem 20. The necessity follows on applying the Schwarz in-
equality in Theorem 19. For the sufficiency we need only show that F(z)/
E(z) and F*(z)/E(z) are of bounded type and of nonpositive mean type in
the upper half-plane. Bounded type is obtained by Theorem 11. The
hypotheses of the theorem are satisfied on the real axis by the proof of
Theorem 16 since F(x)/E(x) is square summable. The growth hypothesis
in the upper half-plane follows from the fact that
lim r1 f:: log* | K(re”, re®) E(r¢®) 2| sin 6 df = 0.
This is true because
K(re®, re®) < |E(re®)|2/(4mr sin 0)

for 0 < 0 < =, where
lim =1 [ log* [1/ (47 sin 6) | sin 0 40 = 0.

700

Nonpositive mean type is obtained from the same estimate by Theorem 10.

2l. COMPLETENESS OF THE SPACE X(E)

The explicit estimate of Theorem 20 is used in proving completeness of
the space,

THEOREM 2l. The space J8(E) is a Hilbert space.

Proof of Theorem 21. Consider any Cauchy sequence (F,(z)) in the metric
of (E). Since

|F(w) — Fp(w)|* < |Fy(t) — Fo(0) |1 K(w, w)

for all complex w, the sequence (F,(w)) is a Cauchy sequence of numbers
forany fixed w. By the completeness of the number system, F(w) = lim F,,(w)
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exists. Since K(w, w) is a continuous function of w by Problem 40, it remaing
bounded on any bounded set. The convergence is therefore uniform on
bounded sets and the limit is entire. If (g, ) is any finite interval,

b
[t — F.01/E@)
. (v .
—tim [*|[F(0) — PL(OVEQ) 1t < lim |[F(0) — Fo 0]
ko0 k= -
where the limit on the right exists because the sequence is Cauchy. Since
a and b are arbitrary,

72 1) — P @UE@Pd < lim [Fy(8) — Fu(0)%

k-0
Since |Fy(w) — F,(w)[2 < |Fi(t) — F,(t) | K(w, w) for every w,
|F(w) — F,(w)[? <lim |Fy(t) — F,(0)I* K(w, w)
k=0
for all complex w. By the proof of Theorem 20, F(z) — F,(z) belongs to
Je(E). Since F,(z) belongs to J¢(E) and since J(E) is a vector space, F(z)
belongs to JE(E). Since [F(t) — F (8| < lim [F(f) — F,()|| and since
k—rco

the given sequence is Cauchy, it converges to F(z) in the metric of JC(E).
This completes the proof of the theorem.

PROBLEM 46. If J¢(E) is a given space, show that there is at most one
real number o, modulo , such that ¢°E(z) — e~*E*(z) belongs to J(E).

PROBLEM 47, Let f(z) be a function which is analytic in the complex
plane except for isolated singularities at points (£,) on the real axis, Suppose
that f*(z) = f(z) and that Re —if(z) > 0 for y > 0. Show that there exist
positive numbers g, and a nonnegative number p such that

[f(2) —f(@)]](z — @) = p + 2 paltn — 2)7Htn — &)

when z and w are not real. Show that

Pa= hf? (t, — 2)f(2)

for every n.

PROBLEM 48. If E(z) is a given entire function which satisfies the in-
equality |E(x — iy)| < |E(x + ©)| for y > 0, show that there exists a con-
tinuous function ¢(x) of real x such that E(x) exp [ig(x)] is real for all values
of x. If g(x) is any such function, show that

¢’ (%) = mK(x, %)|E(x)|7* > 0

for all real x. Such a function is said to be a phase function associated with

E(z).
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PROBLEM 49. Let JC(E) be a given space and let ¢(x) be a phase function
associated with E(z). Show that

E(e)™ K(¢, z) = {E(2) — E*(z2) exp [—2ip(0)]}/[27i(c — 2)]
belongs to JC(E) for every real number ¢ and that
E(e) F(e) = (F(1), E(e)™ K(¢, 1))
for every F(z) in JX(E). Show that
(E(a)™ K(a, 1), Be)7 K(b, 1)) = {1 — exp [2ig(b) — 2ig(a)]}/[2mi(a — b)]

if @ and b are distinct real numbers.

22. ORTHOGONAL SETS IN THE SPACE X(F)

Phase functions are used to construct orthogonal sets in Je(E) which
yield a remarkable formula for norms in the space.

THEOREM 22. Let J8(E) be a given space and let p(x) be a phase function
associated with E(z). If « is a given real number, the functions {£(z,)1 X
K(t,, 2)}, t, real and ¢(¢,) = « modulo =, are an orthogonal set in JC(E).
The only elements of J¢(E) which are orthogonal to E(¢,)"1K(¢,, z) for
every n are constant multiples of ¢*E(z) — ¢%E*(z). If this function does
not belong to J¢(E), then

[ VP [E@) 1 = 3 1) EW) Bl )
for every F(z) in (E).

Proof of Theorem 22. Orthogonality follows from Problem 49. Explicit
proof of the theorem is restricted to the case « = 0. The general case then
follows because E(z) can be replaced by ¢**E(z) without change of the corre-
sponding space. Let f(z) = —A(z)/B(z). Since A(z) and B(z) are real for
real z, f*(z) = f(z). Since K(z, z) > 0 when z is not real, Re —if(z) > 0
when y > 0. The singularities of f(z) are the real points where B(z) has a
zero of higher multiplicity than A(z). These are the points (¢,) where
o(t,) = 0 modulo =. By Problem 47, there exist positive numbers (p,) and
a nonnegative number p such that

[f(2) —=fw)])(z — @) = p + 3 p,(t, — 2)7(, — @)
when z and w are not real. The numbers (p,) are given by

b =1im (2 —1,)A(2)[B(2) = A(t,)|B'(t,)-

2ty
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Explicitly the formula reads

At,)

- B(zy B
K(w, z) = éB(Z)B(w) + EWB/& ) © )

zZ—t,—1t

Written in this way the formula is valid for all complex z and w. We now
show that convergence takes place in the metric of JS(E).

Since B(z)[(z — t,) = wE(t,) " K(t,, z), the functions are an orthogonal
sequence in J¢(E). Note that

1B/ — o) IF = w2 E(1,) 7K (1 1), E(2,) K (L 1))
= KLy, 1) [E(L,) |72 = 7B'(L,) [A(t,,)

To obtain convergence of the orthogonal series in the metric of J(E), we
need only show that

| A(t,) B(t) ( )
2 | 7B/ (t,) t — t, @ — i, < -
This is true because ~
Al B B o

2 wB (t,) w —t, ® —t,

In particular the sum of the orthogonal series belongs to JE(E). Since
K(w, z) belongs to JC(E), it follows that pB(z) B(w) belongs to Je(E). If F(z)
is an element of JE(E) which is orthogonal to E(t,,)"1K(¢,, z) for every n, then

Fw) = (F(t), K(w, 1)) = (F(t), (p[m)B(t)B(w))
= B(w)(F (1), (p[m)B()).

By the arbitrariness of w, F(z) is a constant multiple of B(z). If B(z) does
not belong to J(E), then F(z) vanishes identically and the orthogonal set
is complete. In this case we obtain for every F(z) in J¢(E),

NE@N = 3 1CF@), E(,) Kty I |1 E(L,) 1K (2, 1) |12
= 2 |F(t,)[E(,) | mlg’ ( n)

by the properties of orthogonal sets.

PROBLEM 50. Show that any space J8(E) has the following properties:
(H1) Whenever F(z) is in the space and has a nonreal zero w, the
function F(z) (z — @)/(z — w) is in the space and has the-same norm as F(z).
(H2) For every nonreal number w, the linear functional defined on the
space by F(z) — F(w) is continuous.
(H3) The function F*(z) = F(z) belongs to the space whenever F(z)
belongs to the space and it always has the same norm as F(z).
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PROBLEM 51. If J6(E) is a given space, show that the function L(w, z) =
9mi( — z)K(w, z) satisfies the identity

L(w, z) = L(a, z)L(a, ) *L(w, o) + L(&, z)L(&, &)~ L(w, &)

for every nonreal number «.

PROBLEM 52. Let K(w, z) be an entire function of z defined for every
nonreal number w, such that K(z, w) = K(w, z) and K(w, w) > 0. Assume
that L(w, z) = 27i(® — z)K(w, z) satisfies the identity of Problem 51 for
some nonreal number «. Show that

K(w, z) = [B(2)A(w) — A(2)B(w)]/[m(z — @)]
for some entire functions A(z) and B(z) such that B(z)A*(z) = A(2)B*(z).

PROBLEM 53. Assume that K(@, z) = K(w, z) for some nonreal w in
Problem 52. Show that 4(z) and B(z) can be chosen real for real z and that
the function £(z) = A(z) — iB(z) then satisfies the inequality [E(x — )| <
[E(x + iy)| for y > 0.

23. CHARACTERIZATION OF THE
SPACE J(E)

The axioms (HI), (H2), and (H3) of Problem 50 characterize the
space JC(E).

THEOREM 23. A Hilbert space 3, whose elements are entire functions,
which satisfies (HI), (H2), and (H3), and which contains a nonzero element,
is equal isometrically to some space J¢(E).

Proof of Theorem 23. Because of (H2) there exists a unique element K(w, z)
of J¢, when w is not real, such that F(w) = (F(t), K(w, t)) for every F(z) in
JC. We prove the theorem by showing that K(w, z) is of the known form for
a space JO(E). If o is a nonreal number, the inequality K(«, a) = (K(a, t),
K(a,t)) = 0 holds by the positivity of an inner product. The inequality
is strict unless K(«, z) vanishes identically, which implies that every element
of JC€ vanishes at «. Since

F(z)(z — &)[(z — o) = F(2) + (2 — &)F(2)/(z — ),

the axiom (HI) implies that F(z)/(z — «) belongs to J¢ whenever F(z)
belongs to J¢ and has a zero at «. If every element of J vanishes at o, it
follows inductively that F(z)/(z — «)" belongs to J€ and vanishes at « for
everyn = 1,2, 3, -+ . Since F(z) is an entire function, it must then vanish
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identically. The hypothesis that J¢ contains a nonzero element therefore
implies that K(«, o) > 0.

Consider the function K(w, z) — K(a, z)K(e, o) 72K (w, a), which be-~
longs to J€ as a function of z for every nonreal number w. By (HI),

[K(w, 2) — K(«, 2)K(ot, o) K(w, )] (z — &)[(z — &)

belongs to J&. The function vanishes at & If F(z) belongs to J¢ and vanishes
at &, then because of (HI),

(L), [K (w0, £) — K(oy 1)K {0y ) K (w, )] (¢ — @)/ (¢ — o))
= (F)(t — )/ (t — &), K(w, t) — K(a, t)K(e, )" 2K(w, o))
— F(w)(w — a)/(w — )
— (F(t), [K(w, 1) — K(& 0)K(&, &) K (w0, 0)](® — &)@ — o)),

Since [K(w, z) — K(&, 2)K(&, &) 'K (w, &)](® — &)[(® — o) vanishes at &
and since F(z) is an arbitrary element of J& which vanishes at &, we can
conclude that

[K(w, z) — K(o, 2)K (0, &) K (w, a)](z — &)[(z — o)
= [K(w, 2) — K(&, 2)K(&, &)~ K(w, &)](® — &)/(@ — ).

This identity is equivalent to the identity of Problem 51.
Now apply the axiom (H3). It implies that K(w, Z) belongs to J€ for
every nonreal number w. If F(z) is in ¢, then

(F(t), K(w, 1)) = (F*(t), K(w, 1)) = F(@) = F(1), K(@, 1)).

By the arbitrariness of F(z), K(w, z) = K(®, z). Problem 53 now introduces
a space JE(E). We show that it is equal isometrically to J€.

The function K(w, z) belongs to both spaces for every nonreal number w.
The inner product of two such functions is the same in J¢ as it is in J¢(E).
A finite linear combination of such functions therefore has the same norm
in Je asit does in J&(E). There is no nonzero element of J¢ which is orthogonal
to all such functions since it then vanishes for all nonreal values of w, and
hence, by continuity, for all w. So if F(z) is in J, there is a sequence (F,(z))
of finite linear combinations of such special functions such that F(z) =
lim F,(z) in the metric of J¢. Since the sequence is Cauchy in the metric
of J¢ and since the approximating functions have the same norms and inner
products in J&(E) as they do in J¢, the sequence is Cauchy in the metric of
Je(E). Since J¢(E) is a Hilbert space, G(z) = lim F(z) exists in the metric
of JC(E). For every nonreal number w,

G(w) = (G(1), K(w, 1)) = lim (F,,(t), K(w, 1))
= lim (F,(t), K(w, £)) = (F(1), K(w, 1)) = F(w).
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By the arbitrariness of w, G(z) = F(z). Also
16 |5 = lim |F,(5) | g = lim [|F,(8) || = [IF(2)].

5o Jé is contained isometrically in JE(E). A similar argument will show that
Je(E) is contained isometrically in J¢. The theorem follows.

pROBLEM 54.  Let J€ be a Hilbert space of entire functions which satisfies
(H1) and (H2) and which contains a nonzero element. Show that there
exists a space JO(E) and an entire function U(z) such that U(z)U*(z) = 1
and such that I'(z) — U(2z)F(z) is an isometric transformation of J¢ onto

Je(E).

24. UNIQUENESS OF SPACES WITH
GIVEN PHASE FUNCTIONS

A space JC(E) is essentially uniquely determined by any phase function
associated with E(z).

THEOREM 24. Let JC(£;) and J8(E,) be given spaces such that E,(z) has
no real zeros, and let ¢;(x) and g,(x) be corresponding phase functions. If
@1 (#) = @qo(x) whenever @,(x) =0 modulo $m or @,(x) = 0 modulo =,
then tan @,(x)/tan @,(x} is a positive constant. There exists an entire function
S(z), which is real for z and which has only real zeros, such that F(z) —
S(z)F(z) is an isometric transformation of JC(E;) onto JC(E,).

Proof of Theorem 24. 'The zeros of B,(z)[/A,(z) are real and simple and are
the points x where @,(x) = 0 modulo 7. The zeros of 4,(z)/B,(z) are real
and simple and are the points x where ¢;(x) = {7 modulo 7. Since id,(z)/
B,(z) is analytic and has a nonnegative real part in the upper half-plane, it
is of bounded type in the half-plane by Problem 20. For the same reasons,
id,(2)[By(z) is of bounded type in the half-plane. The zeros of B,(z)/A4,(2)
are real and simple and are the points » where @,(x) = 0 modulo #. The
zeros of Ay(z)[B,(z) are real and simple and are the points x where @,(x) =
37 modulo 7. The hypotheses now imply that

k(z) = [By(2)[4x(2)]/[B1(2)[4:(2)]
is an entire function which has no zeros. Since k*(z) = k(z) and since £(z)
is of bounded type in the upper half-plane, it is of Pélya class by Problem 34.
(Compare it with the function 1 which is of Pélya class.) By Lemma 2,
k(z) = k(0) exp (—az? — ibz)

where ¢ > 0 and Re b > 0. Since k(z) is of bounded type in the upper half-
plane, 2 = 0 and 4 is real. Since £(z) is real for real z, k(z) = kis a constant.
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Since id,(z)/By(z) and id,(z)[By(z) have nonnegative real parts in the upper
half-plane, k is positive. Since tan ¢,(x) = By(x)[4,(x) and tan @,(x) =
B, (%) [A,(), tan @y(x) [tan @, (x) = kis a positive constant. Write £ = ¢2 where
¢ > 0. Since we assume that E,(z) has no real zeros,

S(2) = ¢72By(2)[By(2) = ¢dy(2)[44(2)

is an entire function, and it is real for real z. It has only real zeros and

satisfies the identity
Ky, 2) = S(2) K (w, 2)S(w).

If F(Z) is a finite linear combination of functions K (w; 2)8(w), the identity
implies that S(z)F(z) belongs to J¢(E,) and has the same norm as F(z) in
Je(E;). Since such special functions are dense in JC(E,), F(z) — S(2)F(2)
is an isometric transformation of J8(E,) into JC(E,). Since the range of the
transformation is a closed subspace of JC(E,) which contains Ky(w, 2)
whenever $(w) # 0, it contains every element of J(E,).

PROBLEM 55. Let F(z) and G(z) be polynomials which are real for real z
and have only real simple zeros. Assume that there exists a continuous,
increasing function y(x) of real x such that the zeros of G(z) are the points
x where p(x) = 0 modulo 7 and the zeros of F(z) are the points x where
p(x) = } modulo 7. Show that G'(x)F(x) — F'(x)G(x) is of constant sign
on the set where y(x) = 0 modulo $7.

PROBLEM 56. If the degree of G(z) does not exceed the degree of F(z) in
Problem 55, show that there exists a real number % such that

2 _p 4 G(1)

Fz)  © Tr=F )z — 1)

PROBLEM 57. If F(z) and G(z) are not both constants in Problem 55,
show that either F(z) — iG(z) or F(z) 4 iG(z) satisfies the inequality
|E(x — i)l < |E(x + )| fory > 0.

PROBLEM 58. Ifs and ¢ are positive numbers such that s < ¢, show that

1 — zjt 1fs — 1/t
'l—z/s"’ll = [Il/s—l/ZJ -

PROBLEM 59. Let (s,) and (,) be unbounded, increasing sequences of
positive numbers such that

‘yn < tn < S’n-{—l < tn+1
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for every n. Show that
g1 — 2,
Sl — z)s,,

:I

converges if z 5 s, for every n. If p(z) = min |1/z — 1/s,|, show that the
convergence is uniform in any set on which p(z) is bounded away from zero.

PROBLEM 60. Lect 9(x) be a continuous, increasing function of real x
which has 0 as a value. Show that there exists a function f(z) with these
properties:

(1) The function is analytic in the complex plane except for isolated
singularities on the real axis, f*(z) = f(z), and Re —if(z) > 0 for y > 0.
(2) The zeros of f(z) are real and simple and are the points x where
x) = 0 modulo 7.

(3) The zeros of 1[f(z) are real and simple and are the points x where
) = 47 modulo 7.

(x
p(x

PROBLEM 6l. In Problem 60 show that there exists an entire function
A(z), which is real for real z and which has only real simple zeros, and whose
zeros are the points x where y(x) = {7 modulo 7. Show that B(z) =
A(z)f(z) is an entire function which is real for real z. Show that E(z) =
A(z) —iB(z) is an entire function which has no real zeros and which
satisfies the inequality |E(x — iy)| < |E(x 4+ »)| for » > 0. Show that there
exists a phase function g(x) associated with E(z) such that @(x) = p(x)
whenever ¢(x) = 0 modulo {7 or »(x) = 0 modulo {=.

PROBLEM 62. Lct F(z) and G(z) be entire functions which are real for
real z and which have only real simple zeros. Assume that there exists a
continuous, increasing function y(x) of real x such that the zeros of G(z) are
the points x where p(x) = 0 modulo 7 and the zeros of F(z) are the points
x where w(x) = jo modulo 7. If F(z) or G(z) has a zero and if G(2)/F(z) is
of bounded type for y > 0, show that either F(z) — iG(z) or F(z) + iG(2)
satisfies the inequality [E(x — &)| << |E(x + )] for y > 0.

PROBLEM 63. Let L(z) be an entire function of Pélya class which has no
real zeros and which satisfies the inequality |E(x — )] < |E(x + iy)| for
» > 0. Let p(x) be a phase function associated with E(z). Show that there
exists a number p > 0 such that

0 o Y [+ do(t)
éj—)log [E(x + o) = py + ;fwoo mz

for y > 0.
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PROBLEM 64. Show that £(z) in Problem 61 can be chosen of Pélya class
if

f+oo wlt) _ o
—w 1 _|__ tZ

25. FUNCTIONS ASSOCIATED WITH J(E)

In work with a space J&(E) we must consider functions which are associ-
ated with the space but which do not necessarily belong to it. Examples of
such functions are A(z) and B(z). We now identify the relevant class of

functions.

THEOREM 25. Let J(E) be a given space and let S(z) be an entire
function which has a nonzero value at a point «. A necessary and sufficient
condition that [F(z)S(e) — S(2)F(«)]/(z — «) belong to JE(E) whenever
F(z) belongs to JC(E) is that

fj:: (1 4 &)1 |S(t)[E(1)2dt < oo,

that $(z)/E(z) and S*(z)/E(z) be of bounded type in the upper half-plane,

and that these ratios be of nonpositive mean type.

Note that these conditions do not depend on «.

Proof of Theorem25.  Ifdifference quotients belong to JC(E), then [F( z)8S(a) —
S(F@)]/[(z — 0)E()] and [F*(2)S(a) — §*(2)F(o)]][(z — 3)E(2)] are
of bounded type and of nonpositive mean type in the upper half-plane
whenever F(z) belongs to JC( ). Since a nonzero polynomial has zero mean
type, [F(2)S(a) — S(2)F(a)]/E(2) and [F*(2)S (o) — S*(z)F(a)]/E(z) are
of bounded type and of nonpositive mean type in the upper half-plane.
Since F(z)|E(z) and F*(z)|E(z) are of bounded type and of nonpositive mean
type, so are F(«)S(z)[E(z) and F(«)S*(z)/E(z). If there exists an element
F(z) of (E) havmg a nonzero value at a, we can conclude that $(z)/E(z)
and $*(z)/E(z) are of bounded type and of nonpositive mean type in the
upper half-plane. Such an element must exist, for otherwise F(2)|(z — o)
belongs to Je(E) whenever F(z) belongs to J¢(E) and the proof of Theorem 23
will show that JE(E) contains no nonzero element. Since [F(z)$(a) —
S(z)F(x)]/(z — a) belongs to JC(E) whenever F(z) belongs to JC(E),

[ 1R @)S(0) — SOF@/IE — O EO]P < o

for every F(z) in J¢(E). Since (z — «)[(z — i) is bounded on the real axis,
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it follows that

?

[72 (1 4 o IF0S(0) — SOF)I/EQ) 1 < .
Slncef |F(t)[E(t)|*dt < oo, we obtain
f (1 + =1 S() JE() |t < oo

when F(a) # 0. The necessity follows. The sufficiency is obtained by
reversing steps in the proof of necessity.

PROBLEM 65. Let f(z) be a function which has an absolutely convergent
representation

S = [77 (= 2 () du()

for y > 0, where A(x) is a Borel measurable function of real x and u(x) is a
nondecreasing function of real x. Show that f(z) is analytic and of bounded
type in the upper half-plane and that it has nonpositive mean type. Hint:
Write f(z) as a linear combination of functions which are analytic and have
nonnegative real parts in the upper half-plane.

PROBLEM 66. Let E(z) and S(z) be entire functions, let (g, &) be a finite
interval, and let

M(z) = max |[E()S(z) — S(E(2)]/(t — 2)
for a <t < b. Show that M(z) remains bounded on every bounded set.
PROBLEM 67. Let J¢(E) be a given space and let 8(z) = A(2)u + B(z)v
where ¢ and v are numbers, not both zero, such that #v = su. Show that
[F(2)S(w) — S(2)F(w)][(z — w) belongs to JC(E) whenever F(z) belongs to
JC(E) and that the identity
0 = (F(t)S(a), [GOS(B) — SOGB/(E — B))

— ([F(1)S(e) — S(OF(o)]/(¢ — &), G(1)S(B))
+ (o0 — BYFOS() — SOF (][t — o), [G()S(B) — SOG(B1/(t — B))
holds for all elements F(z) and G(z) of J(E) and all complex numbers
o and f.

PROBLEM 68. Let JC(E) be a given space and let $(z) be an entire function
such that [F(z)S(w) — S(z2)F(w)]/(z — w) belongs to JC(E) whenever F(z)
belongs to JC(E). Assume that the identity of Problem 67 holds for all
elements F(z) and G(z) of J&(£) and for all complex numbers « and . Show
that S(z) == A(2)u + B(z)v for some numbers « and v such that v = 7u.
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PROBLEM 69. Let JC(E) be a given space and let §(z) be a nonzero entire
function such that [F(z)S(w) — S(2)F(w)]/(z — w) belongs to J(£) when-
ever F(z) belongs to JE(E). Assume that there exists a nondecreasing function
u(x} of real x such that S(z) is u-equivalent to zero and such that JC(E) is
contained isometrically in L2(u). Show that S(z) = A(z)u + B(z)ov for some
numbers u and v such that v = du. Show that u(x) is a step function whose
points of increase are zeros of §(z) and that u(i-++) — u(t—) = K(t,t)~* at
each such zero. Show that JO(£) fills L3(u).

26. FUNCTIONS SATISFYING AN ESTIMATE
ON THE IMAGINARY AXIS ‘

The functions associated with a space JC(E) can be identified from
different conditions which require a precise estimate on the imaginary axis.

THEOREM 26. Lect JC(E) be a given space and let S(z) be an entire function
such that S(z)/E(z) and S*(z)/E(z) are of bounded type in the upper half-
plane. Assume that E(z) has no real zeros and that u(x) is a given non-
decreasing function of real x such that JC(E) is contained isometrically in
L3(u). Assume that there exists no nonzero entire function @(z) which is
‘u-equivalent to zero such that [F(2)Q(w) — Q(2)F(w)]/(z — w) belongs to
JC(E) whenever F(z) belongs to J(E). If

[ (U 3 1S dp() < oo,

if
lim sup [S(9)/E()| < oo,
and if v
lim sup [S(—y)[E()] < oo,
gt

then [F(z)}S(w) — S(2)F(w)]/(z — w) belongs to J(E) whenever F(z)
belongs to JC(E).

Proof of Theorem 26. I{F(z) belongs to JE(E), we must show that [F(z)S(w) —
S(2)F(w)]/(z — w) is orthogonal to every element A(x) of L2(u) which is
orthogonal to JC(E). Let £(x) be held fixed. If w is a given number, we show
that there exists a number L(w) such that the identity

Fa)L(w) = [ F()S(w) — S(OF(w) ,

—o t—w

(D)du(t)

holds for every F(z) in JC(E). If w lies on or above the real axis, define L(w)

by ro E(0)S(w) — S E(w) R(t)du().

E(w)L(w) = f

—e t—w
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This is possible because E(z) has a nonzero value at w by hypothesis and
because the hypotheses imply that

[r= | B — S

i —w
The integral in the definition of L(w) is absolutely convergent by the
Schwarz inequality in L2(u). If F(z) is in JS(E),
F(w)[E(2)S(w) — S(2)E(w)]/(z — w)
= Ew)[F(2)S(w) — S(2)F(w)]/(z — w)
S(w)[E(2)F(w) — F(2)Ew)][(z — w)
where the last term belongs to J(E). The desired identity follows since A{x)

is orthogonal to J¢(E) and since E(z) has a nonzero value at w. The same
argument with E(z) replaced by E*(z) will show that

f+°° E*()S(w) — S()E*(w)

—o t—uw

du(t) < 0.

h(#)du(t)

E*(w)L(w) =

for all such w. This formula is used to define L(w) when w is in the lower
half-plane. The previous argument will show that the desired identity holds
for all complex w.

When z is in the upper half-plane,

5(2) 1 BOHOIG) _ o SOOI

E(z) t—z —o P —z

where each integral represents a function which is analytic and of bounded
type in the upper half-plane by Problem 65. Since we assume that $(z)/E(z)
is of bounded type in the upper half-plane, L(z) is analytic and of bounded
type in the upper half-plane. Since we assume that §*(z)/E(z) is of bounded
type in the upper half-plane, a similar argument will show that L*(z) is of
bounded type in the upper half-plane.

We show that L(z) is an entire function. If (a, 5) is any finite interval,
write

L(z) =

E(z)L(z) —Sz)f __%‘_(_) E(2) ﬁww

o E() K0 du() o SRR dp()
SRR _ pyy [ SORDIG)

b t— z

+5(2) [

where the first two integrals represent functions analytic in the half-plane
% > a and the last two integrals represent functions analytic in the half-plane



66 EIGENFUNCTION EXPANSIONS Ch 2

x < b, The middle integral is a limit of Stieltjes sums

é (4)S —Stk)E(z) f Sdu

taken over the partitions a = ¢, < ¢, **+ < t, = b of the interval (g, b). If
M(z) is defined as in Problem 66,

E E(tk)S(Z) — S(l‘k E(z)f Bt du(t) l < M(z)f |2 (2)|du(t).

r=1 [
Since M(z) remains bounded on every bounded set, it follows that

be(t)S(z) — S()E(2)
a t— z

he)du()

is an entire function. We have now shown that E(z)L(z) is analytic in any
vertical strip of points x + ¢y such that @ < x < b. By the arbitrariness of
a and b, E(z)L(z) is an entire function. A similar argument will show that
E* (z)L( z) is an entire function. Since E(z) has no zeros on or above the real
axis, it follows that L(z) is an entire function.

By the Schwarz inequality,

J‘+oo E()h(t)dpu(t) |2 - J‘+oo [E(®) Pdu(t) f+°° |h(s) 2du(s).

—® t— z (t —x)% +

By the Lebesgue dominated convergence theorem,

i [r 0RO _
Y—too Y0 t—1b

A similar argument will show that

w S(OADdu(t
R ULOL O
Yrtoo VTR T — 1
Since we assume that
lim sup |S(i)[E(i)] < oo,

. Y~r+c0
it follows that
Lim [L(y)| =
. Yyt
Since we assume that

lim sup [S(—ip)[E(iy)| < oo,
v+

a similar argument will show that

lim |L(—iy)| = 0.

Y—=+w

By Problem 39, L(z) vanishes identically,
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We have shown that
0 — f-m SHE(w) — E(4)S(w)

—® t—w

Ft) du(t)

for all complex w whenever h(x) is an element of L?(u) which is orthogonal
to JE(E). By the arbitrariness of A(x), [S(2)E(w) — E(2)S(w)]/(z — w)
coincides in L2(u) with an element of JC(E). For any fixed w, S(z) is u-
equivalent to an entire function T(z) such that [T(z)E(w) — E(z) T(w)}/
(z — w) belongs to J(E). The entire function P(z) = 8(z) — T(z) is
u-equivalent to zero and [P(z)E(w) — E(z)P(w)]/(z — w) coincides
in L?(u) with an element of J(E). This element must be of the form
[Q(2)E(w) — E(2)@(w)]/(z — w) for some entire function @(z) which is
u-equivalent to zero. By hypothesis such a function @(z) vanishes identically.
It follows that P(w) == 0. By the arbitrariness of w, P(z) = 0 and §(z) =
T'(z). The theorem follows.

PROBLEM 70. Let JC(E) be a given space and let $(z) be an entire function
such that S(z)/E(z) and $*(z)/E(z) are of bounded type in the upper half-
plane. Assume that E(z) has no real zeros and that u(x) is a given non-
decreasing function of real x such that J¢(E) is contained isometrically in
L2(pu). Assume that there exists a nonzero entire function @(z) which is
pu-equivalent to zero such that [F(z)@Q(w) — @(2)F(w)]/(z — w) belongs to
JC(E) whenever F(z) belongs to J8(E). 1f

fj:: (1 &) SO Pdp(t) < oo,
if
lim sup |$(19)/Q ()] < o,

Y=+

and if

lirr:up 1S(=1)/Q(H)] < oo,
show that [F(z)S(w) — S(z)F(w)]/(z — w) belongs to JE(E) whenever F(z)
belongs to J8(E).

PRCGBLEM 71. Let J¢(E) be a given space such that E(z) has no real zeros,
and let S(z) be an entire function which is real for real z and has no zeros,
such that S(z)/E(z) is of bounded type in the upper half~plane. Let u(x) be
a nondecreasing function of real x such that JC(E) is contained isometrically
in L2(u). If

[72(+ e)150) du() < oo,

show that E(z)/S(z) is of Pélya class and that [F(2)S(w) — S(z)F(w)]/(z —w)
belongs to JC(E) whenever F(z) belongs to JE(E).
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PROBLEM 72. LetJC(E(a)) and JC(E(b)) be given spaces such that JE(E(a))
is contained isometrically in JC(E(d)) and E(a, z) has no real zeros. Let S(z)
be an entire function which has no zeros. If [F(z)S(w) — S(2)F(w)]/(z — w)
belongs to JE(E(b)) whenever F(z) belongs to JC(E(b)), show that it belongs
to JC(E(a)) whenever F(z) belongs to JC(E(a)).

PROBLEM73. Let 4, B,C, D be complex numbers such that AD — BC = 0.
Show that the transformation z — (4z + B)/(Cz + D) maps the upper
half-plane into itself if, and only if, i(CA — AC) = 0,i(DB — BD) =0, and
Re (4D — BC) = |AD — BC|.

PROBLEM 74. Let JC(E) be a given space and let o be a real number such
that S(z) = ¢*E(z) — e~ E*(z) does not belong to JC(E). Show that
F(z) — [F(2)S(w) — S(2)F(w)][(z — w) is an everywhere defined and
bounded transformation in JC(LZ) for every complex number w. For each
fixed F(z) in JC(E), show that {F(z)S(w) — S(2)F(w)]/(z — w) depends
continuously on w in the metric of J8(E). Hint: Use Theorem 22.

PROBLEM 75. Let J¢(E) be a glven space and let S(z) be any entire
function such that [F(2)S(w) — S(2)F(w)]/(z — w) belongs to JC(E) when-
ever F(z) belongs to JC(E). Show that [F(2)S(w) — S(2)F(w)]](z — w)
depends continuously on F(z) in the metric of JC(E) for every fixed w. Show
also that [F(z)S(w) — S(z)F(w)]/(z — w) depends continuously on w in the
metric of JE(E) for each fixed F( ). Let R(w) be the transformation F(z) —
[F(2)S(w) — S(z)F(w)]/(z — w) in JC(E). Show that
(06 — BYR(0)R(B) = R(«)S() — R(B)S(e)

for all complex numbers « and f.

PROBLEM 76. In Problem 75 show that
0 = (F(5)S(a), [GE)S(B) — SEG(B))/(t — B))
— (F@)S (o) — SHF()]/(t — ), G()S(B))
+ (o0 — BYIF()S(o) — SF(0)1/(t — ), [G(1)S(B) — SG(B/(t — B))

whenever F(z) belongs to JO(£) and vanishes at o, and G(z) belong to J¢(E)
and vanishes at f.

PROBLEM 77. If ¢(x) is a continuous, increasing function of real x, if
J(x) is a nonnegative, continuous function of x, and if g(§) = = f(x) taken
over all real numbers x such that ¢(x) = 0 modulo 7, show that

" F0dpt) = [T a(6)d0.
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PROBLEM78. Let 4, B,C, D be complex numbers such that 4D — BC #£ 0,
i(AE — B4) =0, i(CD — DC) =0, and Re (4D — BC) > |AD — BC)|.
Show that

7 Re

D —l—zC’ f e £D 4 iC) 4 (D —iC)
A— ¢9(A — iB) — (4 + iB)

27. CHARACTERIZATION OF FUNCTIONS
ASSOCIATED WITH X(E)

The functions associated with JC(E) by Theorem 25 have another
characterization in terms of matrices of entire functions of the form

A(2) B(Z))

M = (0<z> D(z))

THEOREM 27. Let J8(X) be a given space and let S(z) be a given entire
function which does not vanish identically A necessary and sufficient
condition that [F(z)S(w) — S(z)F(w)]/(z — w) belong to JC(E) whenever
F(z) belongs to J¢(E) is that there exist entire functions C(z) and D(z),
which are real for real z, such that

A(2)D(z) — B()C(2) = S(2)S*(2),
Re [A(2)D(z) — B()C(2)] =} IS + §15*(2)]?

for all complex z, and such that [D(z) + iC(z)]/E(z) has no real singularities.
In this case the functions can be chosen so that

lim Rey[D(i) + iC(i)]/E() = 0.
Y=+

The function D(z) + iC(z) is then uniquely determined within an added
imaginary multiple of E(z). If C(z) and D(z) are linearly independent, a
space JE(D —+ iC) exists and there exists a partially isometric transformation
F(z) — F(z) of (E) = J(4 ~— iB) onto (D -+ iC) such that

mF()G(B)~ — (o) G(B)~
= (F()S(«), [G()S(P) — S(t GO — g
— ([FO)S(a) — S(OHF ]/ (t — ), GOS(P)E
+ (o — BIIF()S(o) — SOF()1/(t — o), [GE)S(B) — SOGB( — )=

for all F(z) and G(z) in X(E) and all complex numbers « and f. IfF(z) isin
J(E) and if G(z) = [F(2)S(w) — S(2)F(w)]/{z — w) for some number w,
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then G(z) = [F(2)S(w) — S(2)F(w)]/(z — w). The function
[S(2)S(w) — A(2)D(w) + B(2)C(w)]/[7(z — @)]
belongs to JE(E) for every w and
Fw) = (F(t), [S@)S(w) — A(#)D(w) + Bt)C(w)]/[#(t — ®)Dg
for every F(z) in JE(E).
Proof of Theorem 27, the sufficiency. Since
1S(2)8*(2)| < §18(2)[2 + 2 1S*(2)]?
for all complex z, the hypotheses imply that
|4(z)D(z) — B(2)C(2)|? = |4(2)D(z) — B(2)C(2)[*
On expansion the inequality simplifies to
i[4(2)B(z) — B(2)A(2)[i[C(2)D(z) — D(2)C(2)] = 0.

Since i[4(z)B(z) — B(2)4(z)] >0 for » >0 we obtain i[C(z)D(z) —
D(z)C(z)] =0 for y > 0. By Problem 73 the transformation

w — [D(2)w + B(2)]/[C(2)w + A(2)]

maps the upper half-plane into itself when z is in the upper half-plane and
8(2)8*(z) has a nonzero value. It follows that the inverse transformation

w ~ [A(z)w — B(2)][[-C(2)w + D(2)]

maps the lower half-plane into itself. Reversing the ‘sign of the dependent
and independent variables, we find that the transformation

w — [A(2)w + B(2)}[[C(2)w + D(2)]

maps the upper half-plane into itself. By Problem 73, i[C(z)d(z) —
A(2)C(z)] =0 and i[D(z)B(z) — B(z)D(z)] =0 for y > 0. Since we
assume that

Re [D(2)A(z) — C(2)B(2)] = §IS(2)* + § I1S*(2)I3
it follows that
Re [D(z) + iC(2)][A(2) + iB(2)] = $1S(2)[* + § 15*(2)?
for y > 0, or equivalently,
Re [D(z) 4 iC(2)][[A(2) — iB(2)] = } |S(2)[E(2)]* + §[S*(2)/E(2)[*
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The hypotheses imply that the function on the left is continuous in the
closed half~plane and that equality holds on the real axis. By Problems 2 and
3, there is a nonnegative number p such that

D) +iCz) _, 2 |S()[E) s
Az) —iB(z) — Rt 4

for y > 0. It follows that
[ + e 1s@/B@Pd < 0

and that

HSQP LSS L e OB
3|50 TalEm | Rl

for y > 0. By Problem 20, [D(z) + iC(2)]/[4(z) — iB(z)] is of bounded
type in the upper half-plane. Since the function has no zeros in the half-
plane, it is the square of a function which is of bounded type in the half plane.
Since $(z)/E(z) and $*(z)/E(z) are then dominated in the upper half-plane
by a function of bounded type in the half-plane, they are of bounded type
in the half-plane. Nonpositive mean type is obtained by the second part
of Theorem 10. The required estimate on the imaginary axis is obtained by
the Lebesgue dominated convergence theorem.

Proof of Theorem 27, the necessity. 'To obtain the desired functions ((z) and
D(z), we must determine the identity which generalizes the results of Problem
76 when F(a) and G(B) are not zero. To do this we choose a point on the
real axis where S(z), and hence also E(z), has a nonzero value. We assume
for definiteness that the point is the origin, but a similar argument can be
given with respect to any other real reference point,

We first define a linear functional F(z) — £(0) on J¢(E) in such a way
that

7F(0)G(0)~ — wF(0)G(0)~ = (F(£)S(0), [G(£)S(0) — S(HG(O)]/2)
— ([F()S(0) — S(t F(O )1/t G()5(0))
for all F(z) and G(z) in JE(E). For the existence of such a functional, let

T(z) = A(z)u + B(z)v where u and v are real numbers chosen so that
A(0Yu + B(0)v = 1. By Problem 67, the identity

0 = (F(1), [G() — T@)G(0)]/ty — ([F(t) — TOF(0)1/t, G(#))

holds for all F(z) and G(z) in J@( ). The desired identity is now obtained
on defining

wF(0) = S(0)(F (1), [S(t) — TO)S0)1/0)
for every F(z) in JC(E).



72 EIGENFUNCTION EXPANSIONS - Ch 2

We now define a linear functional F(z) — F(w) on Je(E) for every w.

Consider the function
G(2) = F(2)S(w) + w[F(2)S(w) — S(2)F(w)][(z — w),

which belongs to J6(E) by hypothesis, and notice that G(0) = S(0)F(w).
Define F(w) so that G(0) = S(0)F(w). By Problem 75, F(z) —F(w) is a
continuous linear functional on Je(E) for every w and F(w) is a continuous
function of w for every F(z). If F(z) is in J(E) and if G(z) = [F(z)S(«) —
S(2)F(a)]/(z — o) for some number «, then it follows from the identity of
Problem 75 that G(w) = [F(w)S(«) — S(w)F(x)]/(w — «) for all complex
w. Since [F(2)S(a) — 8(2)F(«)]/(z — «) must then be a continuous
function of z for every «, F(z) is an entire function. If % is a real zero of E(z)
of multiplicity 7, then S(z) and every element of J¢(E) has a zero of multi-
plicity at least  at k. It follows that F(z) has a zero of multiplicity at least r
at each such point. The values of F(z) are used to generalize the identity
of Problem 76.

If F(z) and G(z) are in JC(E), then
{[zF(2)S() — S(2)aF()]]/(z — &) — S(z)F(«)}]2

= [F(2)S(«) — S(2)F(2)][(z — ),

{{2G(2)S(B) — S(2)BG(B)1/(z — B) — S(Z (B)3=
[G(2)S(B) — S(2)G(B)][(z — B)
for all complex numbers o and f. The definitions of F(e) and G(B) and the
defining property of F(0) and G(0) yield
(F@)S(a), [GE)S(B) — SOCBIE — B))
— ([F(5)S(e) — SOF()]/ (2 — &), G(1)S())
+ (o — BIF()S(2) — SHF()]/(t — ), [GOS(B) — SOGBI(E — B))
= (LF(®)S() — S aF(0)]/(t — a),[GOS(B) — SOCBI/ (¢ — £))
— ([F®)S(a) — S@F(@)]/( — «),tG(5)S(B) — SEBGBHI/(t — B))
= nF(0)G()~ — mF(a)G(B)".
This is the general identity for difference quotients,

Since F(z) — F(w) is a continuous linear functional on J¢(E) for every w,
there is a unique element L(w, z) of J&(£) such that

F(w) = (F(t), L(w, 1))

for every F(z) in J¢(E). The required functions C(z) and D(z) are obtained
by finding the form of L(w, z), which is restricted by the identity for difference
quotients. If F(z) = K(a, z) for some number «, then

Fw) = (K(a, 1), L(w, t)) = (L(w, ©), K(a, 1))~ = L(w, o).
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By the arbitrariness of w, F(z) = L(z, «)~ whenever F(z) = K(a, z) for
some number «. Consider the special identity for difference quotients,

(F(0)S(w), [G(1)S(@) — S(O)G(@)]/(t — w))
— ([FO)S(w) — SHOFw)]/(t — w), G(t)S(®))
= 7F(w)G ()~ — wF(w)G ()~

and substitute F(z) = K(a, z) and G(z) = K(B, z) for fixed numbers « and
f. The resulting identity simplifies to

[B(w)A(o) — A(w)B()]P(, B) — [B(B)d(w) — A(B)B(w)]P(w, )
' = —S(w)$*(w) [B(B)A(«) — A(B)B(x)]

in terms of P(w, z) = w(z — @)L(w, z) — S(z)S(w).

Consider each side of the identity as a function of § for fixed « and w.
The identity implies that P(w, z) is a linear combination of 4(z) and B(z)
for each fixed w. Since A(z) and B(z) are linearly independent, there exist
unique numbers C(w) and D(w) such that

P(w, z) = —A(2)D(w) + B(2)C(w).

The identity now states that C(w) = C(%), that D(w) = D(w), and that
A(w)D(w) — B(w)C(w) = S(w)S*(w). In this notation the form of L(w, z)
is

L(w, z) = [S(2)S(w) — A(z)D(w) + B(2)C(w)]/[m(z — @)].

If F(z) = K(a, z) for some fixed number «, F(z) = L(z, «) is an entire
function of z. It follows that C(z) and D(z) are entire functions.

To complete the proof we need to determine F(z) = Q(a, z) when
F(z) = L(«, z) for some given number «. To do so let G(z) = K(B, z) for
a fixed f and substitute in the special identity for difference quotients. The
result is

S(w)[G(o)=8*(w) — 8(e0)G(w)~1/(& — )
— S*(w)[F(B)S(w) — S(BYF(w)1/(f — w)
— 7F(w)G(®)~ — 7F(w)G ()~

Substitute the definitions of F(z) and G(z) and simplify. A short calculation

yields
Qe w) = [D(w)C(a) — C(w)D()]/[m(w — &)].

So if F(z) = L{a, z) for some number «, then

F(z) = [D(2)C(0) — C(2)D()][[m(z — &)].



74 EICENFUNCTION EXPANSIONS - Ch 2

If & is a real zero of E(z) of order 7, then [D(z)C(a) — C(z)D(x)1/
[7(z — &@)] must have a zero of order at least r at 4 for every choice of a.
By the arbitrariness of «, C(z) and D(z) each have a zero of order at least
r at h. It follows that C(z)/E(z) and D(z)/E(z) have no singularities on the

real axis.

The required inequalities for C(z) and D(z) are obtained by the positivity
of an inner product. If w is a fixed number and if » and » are complex
coefficients, then K(w, z)u - L(w, z)v belongs to J8(E) and its self-product is
ui[ B(w) A(w) — A(w)B(w)]/[7(w — @)]

— ud[S(w)S(w) — D(w)A(w) + C(w)B(w)]/[m(w— @)]
+ valS(w)S(w) — A(w)D(w) + B(w)C(w)]/[(w — @)]
+ v3[D(w)C(w) — C(w)D(w)]/[7(w — @)].
Since the expression is nonnegative for all ¥ and 2, we obtain
[D(w)C(w) — C(w)D(w)][(w — @) =0,
|[S()S(w) — A(w)D(w) + B(w)C(w)]/(w — @)|*
< [B(w)A(w) — Aw)B(w)))(w — ) [D(w)C(w) — C(w)D(w)]](w — @).
The last inequality reduces to
Re [A(w)D(w) — B(w)C(w)] = §|S(w)|? + § [S*(w)[*

If F(z) is in JO(E),

F(w)D(w) — F(w)B(w) = (F(t), [B(t)A(w) — A(t)B(w)]D(w)/[(t — ©)])
— (F(1), [$(t)S(w) — A(t)D(w)+ B(t)C()]B(w)[[m(t — @)])
= S(w)(F(t), [B(t)S(@) — S(t)B(@)][[=(¢t — @)])

for all complex numbers w. Apply the identity with w = « and with

F(z) = [B(2)A(B) — A(2)B()1D(B)[[=(z — B)]
— [S(2)5(8) — 4(2)D(p) + B(= C(ﬂ ]B (B)[[m(z — B)]
= S(B)[B(2)S(B) — S(2)B(B)]/[(z —

in which case

—[S(2)8(8) — D(2)A(B) + C(2)B(B)1D(B)][m(z — B)]
— [D(2)C(B) — C(2)D(B)1B(B) [m(z — B)]
= S(BD(2)S(B) — S(2)D(B)][[7(z — B)]

F(z)

I

and

F(2)D(2) — F(2)B(z) = S(2)S(B)[B(2)D(f) — D(2)B(B)1/[m(z — B)].
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It follows that

[B()D(f) — D(a)B(/‘?)]/[W(a — P
= ([B(1)S(B) — SWBPm(t — B, [B)S(&) — S B@)]/[=(t — D]

if S(e) and S(f) are not zero. The formula follows by continuity (Problem
75) for all complex numbers a and . Let ¢(x) be a phase function associated
with E(z). If B(z) does not belong to J¢(£), Theorem 22 can be used to
calculate the inner product. The identity then implies that

iD(z) o 1

—S@ 2
‘B 290

E()

for » > 0, where summation is over the real numbers ¢ such that ¢(f) =0
modulo 7. If « is any real number such that ¢#E(z) — ¢~**E*(z) does not
belong to JE(E), the same argument applies with £(z) replaced by ¢“E(z),
A(z) replaced by A(z) cos a 4 B(z) sin a, B(z) replaced by B(z) cos o —
A(z) sin &, D(z) replaced by D(z) cos & — C(2) sin «, and C(z) replaced by
C(z) cos o + D(z) sin a. The formula obtained in this case reads

_
=97+

¢*[D(2) +iC(2)] + e[D(2) —iC(2)] _ 5 RO 9
¢"[A(2) — iB(2)] — ¢7[A(2) + iB(2)] POIED] (8 —2)® 47

for y > 0, where the summation is over the real points ¢ such that ¢(t) =
o modulo 7.

Since ¢(x) is an increasing function of x which has a positive derivative
everywhere and since ¢'(x) is a continuous function of x,

> f+oo dt _J f 1 do(t)
Ht =k wwt)E@ )+
for y > 0. By Problems 77 and 78 we can conclude that
D(z) - zC( yf.m _2 2 dt
“A(z) —iB(z) E@)] (t —x)" 4"

for y > 0. By the Lebesgue dominated convergence theorem,
lim Rey[D(i) + iC(i)]/E(®) = 0.
Y400

This completes the proof of necessity. The essential uniqueness of C(z)
and D(z) follows from the last formula. If Ci(z) and D,(z) satisfy the
hypotheses of the theorem,

Dy(z) +iGi(2) _ f+oo

dt _R D(z) 4 iC(z)
A(z) — iB(z) T

T CA(z) —iB(2)

S@
E()
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for y > 0. Thus
[Di(2) +iCi(2)][E(z) — [D(2) + iC(2)]/E(2)

is a function which is analytic in the upper half-plane and whose real part
vanishes identically. Itis therefore a constant. If this constant is denoted ¢4,
then £ is real and

Dy(2) + iCy(z) = D(z2) + iC(z) -+ ihE(z),

so that Dy(z) = D(z) + kB(z) and Cy(z) = C(z) + hd(z). .

Since A(z)D(z) — B(z)((z) = S§(z)S*(z) does not vanish identically,
C(z) and D(z) cannot both vanish identically and D(z) + iC(z) is not
identically zero. Since [D(z) + iC(z ]/E(z) has a nonnegative real part in
the upper half-plane, it has no zeros in the half-plane by the maximum
principle. It follows that D(z) 4 iC(z) has no zeros in the upper half-plane,
Since

[D(w)C(w) — C(w)D(w)]/(w — ®) = m(L(w, 1), L(w, 1)) =0
for all complex w,
[D(x — 1) +iC(x — )| <|D(x + D) + iClx + »)|

for y > 0. By Problem 14, the inequality is strict for y > 0 if C(z) and D(z)
are linearly independent.

If F(z) is an element of JC(E) which is a finite linear combination of
special functions

[S(2)8(w) — 4(2)D(w) + B(2)C(w)][[m(z — ®)],
then F(z) is a finite linear combination of the functions
[D(2)C(w) — C(2)D(w)]/[m(z — @)].

It follows that F(z) belongs to J8(D 4 iC). An obvious calculation will show
that F(z) has the same norm in J¢(D + iC) as F(z) has in JE(E). If on the
other hand F(z) is an element of J¢(E) which belongs to the closed span of
such special functions, then the same conclusion follows by continuity:

F(z) belongs to Je(D + iC) and has the same norm there as F(z) has in
JE(E). If F(z) is orthogonal to such special functions, (z) vanishes identic-
ally. Thus the transformation F(z) — F(z) is a partial isometry of JC(E)
into J¢(D + (). Since the range of the transformation is a closed subspace
of (D + ¢C) which contains [D(z)C(w) — C(z)D(w)]/[n(z — @)] for all
complex w, it is all of (D + C).
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If D,(z) = D(z) + hB(z) and Cy(z) = C(z) 4+ hA(z) for some real
number £, a similar argument will show that a space J8(D; + () exists if
Cy(z) and D,(z) are linearly independent, and that the transformation
F(z) — F(z) + hF(z) is a partial isometry of J¢(E) onto J&(Dy + iCy).

PROBLEM 79. If ((z) and D(z) are linearly dependent in Theorem 27,
show that S(z) = A(z)u 4+ B(z)v for some numbers # and v such that
iy = u.

28. CONSTRUCTION OF THE SPACE ity (M)

The proof of Theorem 27 leads to the construction of a new Hilbert space
whose elements are pairs of entire functions. The following matrix notation
is used to simplify work with pairs of functions. A bar is used to denote the
conjugate transpose of a rectangular matrix. Thus

G -en o)
o) =0 o)

A
A square matrix M = ( C D) is said to be nonnegative if the number

—(4 B
(a) ( ) (a) is nonnegative for all choices of numbers a and 4. In this
&/ \C D/ \b
case we write M > 0. Let
I (O —1)
A1 o/
) A
PROBLEM 80. Show that a matrix M =

C
only if, 4 >0, D > 0,C = B, and BC < AD.

D) is nonnegative if, and

4 B
PROBLEM 8l. Let M = (C D) be a matrix of numbers having a nonzero

determinant, and let S and 7 be numbers such that det M = AD — B( =
ST. Show that the matrix (MIM — SIS)/i is nonnegative if, and only if],
i(AB — B4) =0,i(CD — DC) >0, and Re (4D — BC) > 1 |S|2 + & | T2

B
C D) be a matrix of numbers having a nonzero
determinant. Ifi(4B — BA) > 0,i(CD — DC) = 0,and Re (4D — BC) >
|AD — BC|, show that i{(C4A — AC) > 0 and that i(DB — BD) = 0.

PROBLEM 82. Let M = (A
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A(z) B(z)
C(z) D(z)
which are real for real z, such that det M(z) = §(2)8*(z) for some entire
function $(z) and such that

[M(2)IM(z) — S(2)IS(2)]/(z — 2) =0

for all complex z. Assume that A(z) — iB(z) has no zeros in the upper
half-plane and that [D(z) + iC(2)]/[4(z) — iB(z)] has no real singularities.
Then there exists a unique Hilbert space J0g(M), whose elements are pairs
(F +(2)

F_(z)

THEOREM 28. Let M(z) = ( ) be a matrix of entire functions

) of entire functions, such that

M(2)IM () — 8(z)IS(w) (u)
1

2m(z — )

belongs to the space for all complex numbers #, v, and w, and such that

(U>“(F+(W)) _ /(F+(t)) M(1) I (w) — S(t)IS(w) (u)>

o) \F_(w)]  \\F_()/)’ 2m(t — @)
for all elements (?"Eg) of Bg(M). The pair

([F+(Z)S(w) — S(9)F 4 (w)]/(z — W))
[F_(2)S(w) — S(2F_(w)]/(z — w)

F
belongs to Jg(M) whenever (F+EZ)) belongs to J&g(M), and the identity

_(2)
(&) )

/( L (S oc)) ([G+(t)S(ﬂ)—S(t)G 81— )\
= \\e_ws@) \ie_wse) —soe_bnie—p)/
ST 08() — SOF, I — 2| (C.OSE\
\([F (1)S(a) — S)F_ (a)]/(t—a)( 0S() )/
Ly (F-OSE) = SOE(E —
¢ \([F (1)S(a) — S()F- <oc)]/<t—a>)

([G+(t)S(ﬂ) — S()GL(A1/(t — ﬁ))\
[G_()S(B) — SHG_(B)I/(t — B))/

F G
holds for all elements (F+(z)) and ( +(z)) of Xg(M) and all complex
numbers o and f. —(2) G_(z)
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Proof of Theorem 28. By Problem 81, the hypotheses imply that
[B(2)A(2) — A(2)B(2)]/(z — 2) 20
for all complex z. It follows that
A(x — iy) — iB(x — )| < |A(x + ) — iB(x + i)
for y > 0. Since we assume that 4(z) — ¢B(z) has no zeros in the upper half-
plane, the inequality is strict if A(z) and B(z) are linearly independent. In
this case a space JO(E) exists, E(z) = A(z) — ¢B(z). By Problems 81 and 82,
Re [D(z) + iC(2)]/[4(2) — iB(2)]
= |E(2)|* Re [4(2)D(2) — B(2)((2)]
+ 3 |E(2)|2[iC(2)A(2) — id(2)C(2)]
+ § |E(2)|*[iD(2) B(z) — iB(2)D(2)] =0
for 9 > 0. On the other hand we assume that [D(z) + iC(2)]/[4(z) —
iB(z)] has no real singularities and
Re [D(z) +iC(2)1/[4(z) — iB(2)] = |S(2)/E(2)[*

for all real z. By Problems 2 and 3, there exists a number > 0 such that

NOlR dt
E@] (1 — )2 +7

M@+w@ i 2 [
A(z) —

for » > 0. By the Lebesgue dominated convergence theorem,

p— lim Rey[D(@) + iCH)IIAW®) — iB)].
¥=+oo
If a space JE(E) exists and if p = 0, then [S(z)S(w) — A(2)D(w) +
B(2)C(w)]/[w(z — @)] belongs to J&(E) as a function of z for every w. By

the proof of Theorem 27, there exists an entire function £(z), associated with
every F(z) in JE(E), such that

Fw) = (F(1), [S(t)S(w) — A(t)D(w) + Bt)C(w)]/[=(t — ®)])g

F
for all complex w. Let JC be the set of pairs ( ﬁ(z)) of such entire functions.
Then J is a Hilbert space in the norm (2)

|

= 2|F)II%-
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If G(z) = [B(2)A(w) — A(2)B(w)]/[m(z — @)] in K(E), then

G(z) = —[8(2)S(w) — D(2)A(w) + C(2)B(w)][[7(z — @)]

() - oo

and

F(z
belongs to J¢. If (F ) is in J¢, then

/(zl::gg)’ M()IM(w) — S(8)15(w) (0)\

\ a(t ~— ) /
= 2(F(t), [B(t)d(w) — A(t)B(w)]/[7(t — &)1k
= 2F(w).

On the other hand, if G(z) = [S(2)S(w) — 4(2)

z

['nfiz — @)] in J(E), then G(z) = [D(z)C(w) — C(2)
an

w) + B(z)C(w)]]
(@)]/lm(z — @)],

D(
D(w
(G(z;) _ M(2) I (w) — $(2)I8(w ( )

7(z — @)

) is in JC, then

/ OIM (w) — S(b) \
(o) =5=572200)
= F(t) [S(t)S(w) — A(t)D(w) + B(t)C(w)]/[7(t — @)

By linearity

M(2) IV (w) — S(2)IS(w) (u)
[/

2n(z — @)

belongs to J€ )for all complex numbers u, v, and w, and

() (o) = (o) =)
F(z)

for all elements (
F(z)

Jes(M) in this case. By Theorem 27,

([lf(Z)S(w) — S(2)Fw)]/(z — w))
[F(2)S(w) — S(2)F(w)]/(z — w)

) of 3. The space X is therefore the required space
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belongs to Jg(M) whenever (}S(Z)) belongs tolJGS(M) for every w. If
(F(z)) and (G(z)) belong to JGI?(]WZ)) and if « and § are complex numbers
F‘(z) G~(Z) g 8 P ’
then
/(F(t)S(OC)) ([C:’(t)s(ﬁ) — SGB)1/(t — ﬁ))\
\\E@)S(2) ) \[G)S(B) — SOECBII¢E—~ B/
_ /([F(t)S(fX) — SOF(e)]/(t — OC)) (Cf(t)S(ﬁ))\
NI S(0) — SOF @)/ — )" \GWS(B)]/
o/ (FOS@) = SOF@]/ — o)
e )\([Fa)S(oc) S — )

([Cj(t):f(ﬁ) — SOG(BIE — ﬂ))\
[GWSB) — SO —p )/
= AF(H)S(), [GOSE) — SOCBE — )
—2([F()S(x) — SWF@)/(t — «), GH)S(B))
+ (o — BYFWDS(a) — SOF ()] — o), [GHSB) — SOCEE — B))
= 2 F(@) G(B)~ — 2m(a)G()~

=2(z) (o)
by Theorem 27.

If a space JE(E) exists and if p > 0, the proof of sufficiency for Theorem
27 will show that [F(z)S(w) — S(2)F(w)]/(z — w) belongs to JC(E) whenever
F(z) belongs to J¢(£). By the necessity for Theorem 27, there exist entire
functions G,(z) and D,(z), which are real for real z, such that

A(2)Dy(2) — B(2)C1(2) = S(2)8*(2),
Re [4(2)D(z) — B(2)Cy(2)] = §IS(2)* + £ 15*(2)[*
for all complex z, [D,(z) -+ ¢C,(2)]/E(z) has no real singularities, and

lim Re 31Dy (i) + iC,(i)1/E(@y) = 0.

Y~r+o0

By the proof of sufficiency for Theorem 27,

Dy(z) + zC’l(z) _ D [+ S(t) dt
Re o — B =22 1 52
(2) +1iCG(2)
mRe{zj)z—F————( 2 Bz )}
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for y > 0. It follows that

Diy(z) 4 iCGi(2) bz — D(z) +iC(z) _ .,
A(z) = iB(z) -

A(z) — iB(z)
for some real constant A. Then
Cy(z) = Cy(2) — hA(z) and Dy(z) = Dy(z) — hB(z)
are entire functions which are real for real z,
A(2)Dy(2) — B(2)Col2) = S(2)S*(2),
Re [4(2)Dy(2) — B(2)Cy(2)] = §IS(2)* + £ [S*(2)?
for all complex z, [Dy(z) + iCy(2)]/E(z) has no real singularities, and

lim Rey[Dy(ty) + iCo(9)]/E(Y) = O.

y—>+w

Since C(z) = €y(z) — pzA(2) and D(z) = Dy(z) ~— pzB(z),

e = (L, = (L, DED 20)

and we obtain the identity

M(2)IM(w) — S(z)IS(w)
27(z — )

(4 s sosal,
5 , /(277))5@)-

F
Since there is no nonzero element ( +(Z)) of ¥ g(M,) such that F, (z) = 0,

F_(z)

I
there is no nonzero clement (J;iég) of Eg(M,) such that(—pz ?) (?LEZ)

). The required space Jg(AM) is now the set

is a constant multiple of (

0
of all pairs S(2)

o) + (e D)



Th 28 CONSTRUCTION OF THE SPAGE Jeg(M) - 83

F
where 4 is a constant and ( +(Z)) is in g(M,), the norm of such an element
being defined by ~(2)

0 1 0\ [F.(O\]|?
o) + G D)
S(t) —pt 1J\F_()
The required properties of the space are obtained in a routine way from the
known properties of J8g(M,).
If A(z) and B(z) are linearly dependent, then one function, say A(z),

does not vanish identically and we can write B(z) = k4(z) for some real
number %. Since )

2

= i + |

JCs(Ms)*

Re {A(2)[D(z) — hC(2)]} = Re [A(2)D(2) — B(2)((2)]
>3 1S(2)* + £ 1S*(2)]
> |8(2)8%(2)|
> |4(2)[D(z) — hC(2)]l,
[D(z) — hC(2)]/A(z) is a real valued analytic function. It is therefore a

constant. Since |S(z)/4(z)| is a constant, S(z) is a constant multiple of A(z).
We know that there exists a number p > 0 such that

(z) + iC(2) Y [+ |S(2) |2 dt
Re —-r— = =

“Uo =B 2T f B0 - 2)F
fory > 0. Since S(z)/E(z) is a constant, we find that the real part of [D(z) +
iC(2)]/[A(z) — iB(2)] 4+ ipz is a constant. It follows that this analytic
function is a constant, and we obtain the identity

M(2)IM(w) — S(z)IS(w) - 0 -
9m(z — @) = 5(2) (o p/(zﬂ))S(w)‘

If p = 0, the required space Kg(M) contains no nonzero element. If p > 0,

I

l = |A|2 27/p. This

the space consists of pairs Z( ) in the norm

S(2)
constructs the spage Jg(M) in all cases. Uniqueness is proved as in SSPS
Lemma 1.

PROBLEM 83. If JC(E) is a given space, show that the hypotheses of

Theorem 28 are satisfied with S(z) = E(z), ((z) = —B(z), and D(z) =
1

A(z). Show that the transformation F(z) — —:(J;((Z))

iF(z

) is an isometry of
(E) onto 3g(M). V2
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PROBLEM 84. If J¢4 (M) is a given space, show that a space Jg(M)
exists and that the transformation

F.(2) (P2
(F_(Z)) (F_”‘(Z))
takes JCg(M) isometrically onto JCgs(M).

PROBLEM 85. Show that an element S(z) of a space Je(E) is of the form
S(z) = A(z)u + B(z)v for some numbers » and v if, and only if]
[K(w, 2)8(w) — K(w, w)S(2)]/(z — w) .

= [K(®, 2)S(@) — K(@, ©)5(2)]/(z — @)

for all complex z and w. If §(z) is of this form, show that @v = u.

29. DOMAIN OF MULTIPLICATION
BY z IN J(E)

If Je(E) is a given space, multiplication by z in J8(E) is the transformation
defined by F(z) — zF(z) whenever F(z) and zF(z) are in JE(E). In general,
multiplication by z is not a densely defined transformation in J¢(£), but the
domain of the transformation is never very far from dense.

THEOREM 29. A necessary and sufficient condition that an element S(z)
of a space J¢(E) be orthogonal to the domain of multiplication by z in JC(E)
is that S(z) == A(z)u 4+ B(z)v for some numbers u and v,

Proof of Theorem 29, the sufficiency. 1f F(z) is in the domain of multiplication
by z in JS(E) and if w is not real, then
((t — w)F(1), S() ) K (w, w)
= ((t — w)F(1), SO K(w, w) — K(w, )S(w))
= ((t — w)F(t), [S(t)K(w, ®) — K (D, )S(@)](t — w)[(t — @)
= ((t — D)F(), SO K(@, @) — K(, 1)S(®))
= ((t — @)F(1), S(1))K(, @)
by (H!1) and Problem 85. Since K(w, w) = K(®, @) is not zero when w is

not real, {(t — w)F(t), S(t)) = ((z — w)F() St )) Since w is not real, it
follows that §(z) is orthogonal to F(z).

S
N

Proof of Theorem 29, the necessity. 1f F(z) is in the domain of multiplication
by z in JX(E), then it is orthogonal to S(z) and

((t — w)E(t), S)K(w, w) = (¢ — @D)F(), S(1))K(, @)
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for nonreal w. It follows that
((t — w)F(t), S@) K(w, w) — K(w, t)S(w))

= ((t — DF(), S K (D, B) — K(@, )S(@)).
Because of (HI),

(t — W)F(2), SOK(w, w) — K(w, 1)S(w))
= ((t — W), [SWK(D, @) — K@, )S@)](t — w)](t — @)).

It follows from (H1) that every element of JC(E) which vanishes at w is of
the form (z — w)F(z) for some element F(z) of JX(E). Since

[S(2)K (w, w) — K(w, 2)S(10)]
— [S(2)K(®, ®) — K(®, 2)8(@)](z — w)/(z — )

vanishes at w and is orthogonal to every function which vanishes at w, it
vanishes identically. The necessity now follows from Problem 85.

PROBLEM 86. Show that a space JC(E(b)) has dimension | if, and only if,
1 —
(4(b, 2), B(b, 2)) = (A(a, 2), B(a, z))( _yfz , fﬁz)

where A(a, z) and B(a, z) are linearly dependent entire functions which are
real for real z, and where «, f, v are real numbers, not all zero, such that
x =0,y =0, and ay = % Show that

o = Tui, B = mud = mi, y = vl
for some numbers # and v such that
S(z) = A(a, 2)u + B(a, z)o = A(b, z)u + B(b, z)v
is an element of norm 1 in JE(E(b)).

PROBLEM 87. Let J(E(b)) be a given space which has dimension greater
than | and in which multiplication by z is not densely defined. Show that

1 — o
(A(b, 2), B(b, 2)) = (4(a, 2), Bla, Z))( —yfz 1 +zﬁz)

for some space JC(E(a)) which is contained isometrically in JC(E(b)) and for

some numbers «, f§, y, not all zero such that « >0, y >0, and ay = %
Show that

o = Trui, B = mui = moi, y = vl
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for some numbers ¥ and » such that
S(z) = A(a, z)u -+ B(a, 2)v = A(b, z)u + B(b, z)v
is an element of norm 1 in J¢(E(b)) which spans the orthogonal complement

of (E(a)).

PROBLEM 88. Show that multiplication by z is not densely defined in a
space JO(E) if the space has finite dimension. Show that a space JC(E) has
finite dimension r if, and only if, E(z) = S(z)E,(z) where $(z) is an entire
function which is real for real z and Ey(z) is a polynomial of degree r which
has no real zeros.

30. MEASURES AND f(y) SPACES

In a space J&(E) there are many ways of computing norms by integration
on the real axis. Some of these are given by Theorem 22. We now study
general measures associated with a space JC(E).

THEOREM 30. Let J6(£) be a given space and let §(z) be an entire
function, not identically zero, such that [F(z)S(w) — S(2)F(w)]/(z — w)
belongs to JE(E) whenever F(z) belongs to J6(E). Let C(z) and D(z) be
entire functions which are real for real z, such that

A(2)D(z) — B(z)C(2) = S(2)8*(2),
Re [4(2)D(z) — B(2)C(2)] = $18(2)* + £ 1S*(2)I?
for all complex z, [D(z) + iC(z)]/E(z) has no real singularities and

lim Re y*[D(iy) + iC(i)]/E(y) = 0.

y—>+ 0

IfF(z) is in Je(E), let £(z) be the unique entire function such that
F(w) = (F(t), [S(t)S(w) — A(t)D(w) + B(t)C(w)] /[ (t — B)])
for all complex w. Let u(x) be a nondecreasing function of real x. If
[ O T OTN OO

for every F(z) in JC(E), then there exists a function ¢(z), analytic for y > 0,
such that

. Y [t dull)
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for y > 0, and such that
F(z) — [ip(2)F(z) + F(2)]/5(2)
is an isometric transformation of J¢(E) into £(¢).

Proof of Theorem 30. If w is not real and is not a zero of §(z), we show that
there exists a number ¢(w) such that

ip()F(w) + Fw) 1 e F(8) dp(t)

S(w) T Syt —w

for every F(z) in J¢(£). The hypotheses imply that the integral is absolutely
convergent whenever F(z) belongs to JC(E). The existence of a number
@(w) with this property follows once we show that the identity

F(w) b F(2) du(t)

S(w) wd-o S{t)t—w

holds whenever F(z) belongs to J8(E) and vanishes at w. If G(z) is an element
of (&) which has a nonzero value at @, the required identity is equivalent
to

F o F(1)G(£)S*(w) du(t
o0 Gy — o OGS ) dnl)

S(w) e t—w o S

B fm ) G(1)S*(w) — S(6)G*(w) du(t)
o F—w NOL

The hypotheses imply that this formula can be written

wF(w)G*(w) = (FO)S(w)/(t — w), G(1)S(@))
— (F(O)S(w), [G()S(@) — SOG@)]/( — @)).

It is now recognized as a special case of the identity for difference quotients,
Theorem 27. This completes the proof of existence of p(w) when w is not
a zero of §(z). The existence of p(w) follows by continuity for all nonreal
values of w. We now solve for ¢(w) in terms ol u(x).

Let a be a nonreal number, « % w, and replace F(z) by [F(2)S(a) —
S(2)F(a)]/(z — a) in the definition of ¢(w). A short calculation gives the
identity

o) —plw) _ L e dul)

o —w mid—o (t— a)(t —w)
Let y(w) be the function of nonreal w such that

ip()F(w) + Fw) 1 1w F(t) du(l)

S* () 7o SE() t — w
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for every F(z) in J¢(E) where F (z) is the entire function defined by

A

Plw) = (F(), [S*(1)S(@) — A(t)D(w) + BO)C(w)]/[m(t — @)])-

An obvious calculation will show that y(w) = @(w). Since ﬁ‘(z) is the
conjugate of F(z) by Problem 84, we obtain
ip* ) + P |

S*(w) md—o St

Replacing w by its conjugate and then conjugating each side of the equation,
we obtain ¢*(w) = —@(w). It follows that

e F(t) du()
0 t—w

o

p(z) + gw) 1 J+oo du(t)

z—w mid—o (t — 2)(t — @)
when z and w are not real. When z = w, we have

D [+ du(t)

Re ¢(x + &) == ) —-__——(t—x)z T

A space £(g) exists by Theorem 5 and
F(z) — [ip(2)F(2) + F(2)1/5(2)
is an isometric transformation of J¢(E) into £(p).
PROBLEM 89. Let Je(E) be a given space and let ¢(x) be a choice of phase

function associated with E(z). Show that there exists a number p = play =0
for every real number o« such that

¢E(z) + e E*(z) 1 y
Re i) —eom) P T2 o

for y > 0, where summation is over all real numbers ¢ such that ¢(t) =
« modulo 7. Show that p > 0 if, and only if, ¢™E(z) — ¢~*E*(z) belongs
to J&(E).

3l. £(p) SPACES ASSOCIATED WITH X(E)

By the proof of Theorem 28, the conclusion of Theorem 30 states that
the transformation

F (2 _, . s9(2)F.(2) +F (2)
(F_(Z)) v S(2)
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is an isometry of JCg(M) into L£(g). This implies a relation between @(z)
and M(z).

THEOREM 31. Iff(p) and J4(M) are given spaces and if

AF+@D\ _, s w(2)F(2) + F_(2)
T: (Fi(z)) V2 +S(z)

is a transformation of JCg(M) into £(g) which is bounded by 1, then

_[D(s) +iC(z)] + [D(2) —iC()IW(2) .
[4(z) —iB(2)] — [4(2) + iB(2)]W(2)

»(z)

for some function W(z) which is analytic and bounded by 1 in the upper
half-plane.

Proof of Theorem 31. The adjoint T* of T is a transformation of £(¢) into
F.
Jeg(M) which is bounded by 1. If (F+(z§) is in Jg(M) and if w is in the
z

upper half-plane, -
/(F(t) = M) IM(w) — S)IS(w) (—ig(w)/S(w)\\
\(F,@))"/Q on(t — o) ( 1/8(w) )/

= (Valip(t)F(t) + F_()]/S(0), [p(t) + §(w)]/[mi(@ — )]).

It follows that

o P2 +Pw) o M(2)IM(w) — S(2)IS(w) (—ig(w)[S(w)
= wi(id — z) 4 27(z — @) ( 1/8(w) )

Since T* is bounded by 1,

pw) + plw) _ l‘P(t) + ¢(w) |
i@ — ) i@ — 1)
| M) I (w) — S()IS(w) { —ip()/S(a0) ||
= H V2 ot — &) ( 1/S(w) )

= (ig(w)[S(w) 1/S(w))

M () L) — S(20) IS(w) (—i¢<w>/§<w>>
7(w — @) 1/8(w)

The inequality reduces to

M) (7)) _ g

() 1) 1
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and can be written
lp(w)[A(w) + iB(w)] + [D(w) — iC(w)]|
> |p(w)[4(w) — iB(w)] — [D(w) + iC(w)]].

Since Re [D(w) — iC(w)]/[A(w) 4 iB(w)] = 1 for real w and since Re ¢(w) >
0 in the upper half-plane, w(z)[A(z) + iB(z)] + [D(z) — iC(z)] does not
vanish identically in the upper half-plane. The function
_ 9(@)[A(2) — iB(2)] — [D(2) + iC(2)]

¢(2)[4(2) + iB(2)] + [D(2) — ()]
is analytic and bounded by 1 in the upper half-plane. The theorem follows
on solving for ¢(z).

w(z)

PROBLEM 90. Let J6(E) be a given space and let u(x) be a nondecreasing
function of real x such that

Ejuwvmmwh:fjuwﬂﬂmwmo

for every F(z) in JE(E). Show that there exists a function W(z), analytic
and bounded by ! in the upper half-plane, such that

L(z) + E£*(2)W(z) :me dp(?)
E(z) — EX(z)W(z)  m == (1 —2)* 47

for y > 0. If u(x) is constant in an interval (a, b), show that W(z) is analytic
across (a, b) if defined in the lower half-plane by W*(z) W(z) = 1.

Re

PROBLEM 91. Let W{(z) be a function which is analytic and bounded by 1
in the upper half-plane and which is analytic across an interval (a, &) of the
real axis when defined in the lower half-plane by W*(z) W(z) = 1. Show
that W(z) = exp [2ip(x)] for a << x << b where p(x) is a nondecreasing,
differentiable function of x.

PROBLEM 92. In Problem 90, let ¢(x) be a phase function associated with
E(z). Show that ¢(b) — @(a) < 7 and that the inequality is strict unless
W{(z) is a constant of absolute value 1.

PROBLEM 93. Let J8(E(a)) and JC(E(b)) be given spaces such that J¢(E(a))
is contained isometrically in JS(E(b)). Let ¢(a, x) and ¢(b, x) be phase
functions associated with E(a, z) and E(b, z). Show that

@(a, t) — @la,s) < @b, ) — @(b,s)

‘whenever —oo < s < ¢ < oo and @b, 1) — (b, 5s) = 0 modulo =.
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PROBLEM 94. Let f(2) be a function which is analytic and has a non-
negative real part in the upper half-plane. Assume that

. Y [+ du(t)
Ref(x +v) =py + ;J_OO m
for y > 0 where p > 0 and p(x) is a nondecreasing function of real x which
is constant in an interval (g, b). Let z = x 4 ¢y wherey > Oand a << x < b.
Show that
(¢ — %)% 4 A2

for 0 <y < h, where¢c = aif x < §(a + b) and ¢ = b if x > {(a + ).

Ref(x + i) < 2 Ref(c + i)

PROBLEM 95. Let f(z) = lim f,,(z) where f(z) and each f,(z) is analytic
and has a nonnegative real part in the upper half-plane. Assume that

. D [+ dﬂn<t)
R = = —m
efulx +v) ﬁny+wf_w T= 5t 157
for y > 0 for every n, where p,, > 0 and p,(x) is a nondecreasing function
of x which is constant in an interval (a, 5). Show that

. J [+ dlu(t)
R = - N N
ef(x + i) ﬁy+ﬂf_w T
for y > 0, where p > 0 and u(x) is a nondecreasing function of » which is
constant in (a, b).

PROBLEM 96. If W(z) is a function which is analytic and bounded by 1
in the upper half-plane, show that there exists a sequence (W, (z)) of finite
Blaschke products such that W(z) = lim W ,(z) for » > 0. (A Blaschke
product is a product as in Problem 23 multiplied by a constant of absolute
value 1.) Hint: See SSPS Theorem 21.

PROBLEM 97. If (E) is a given space and if W(z) is a given function
which is analytic and bounded by 1 in the upper half-plane, show that there
exists a sequence (P,(z)) of polynomials of Pélya class with these properties:
IfE,(z) = E(2)P,(z), then B,(z) does not belong to J8(£,) and

E(z) + E*(2)W(z) _ | idu(2)

E(z) — E*(2)W(2)  nom Bul2)

for y > 0. Show that F(z) — P ,(z)F(z) is an isometric transformation of
JE(E) into JC(E£,) for every n.
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32. MEASURES ASSOCIATED WITH X(E)
We now construct the measures associated with a given space J¢(E).
THEOREM 32. LetJC (E) be a given space and let W(z) be a given function

which is analytic and bounded by 1 in the upper half-plane. There exists a
number p(E, E) > 0 and a nondecreasing function u(x) of real x such that

o d
= p(E, E)y + %_ f_-:o rf)(;)_i_—yg

E(z) + E*(2)W(z)

ReED) — Br ) W(2)

for y > 0. Let S(z) be an entire function such that [F(z)S(w) — S(z)F(w)]/
(z — w) belongs to J(E) whenever F(z) belongs to J¢(E). Let C(z) and
D(z) be entire functions which are real for real z, such that

A(2)D(z) — B(5C(2) = S(2)8*(2),
Re [4(z)D(z) — B(2)C(2)] = 3 IS(2)]* + §1S*(2)I®
for all complex z, [D(z) + iC(2)]/E(z) has no real singularities, and

lim 3 [D(iy) + iC(i)1/E@) = 0.

Y+

Then there exists a number p(S, §) = 0 such that

R [D2) iG] + [D() — iCEIW)
[4(2) —iB(2)] — [A(2) + 1B(2)]W(2)

_ D (o SO)/EW) Pdu()

=Sy +2 [T

for y > 0, and p(S, S) = 0 if §(2) belongs to J&(E). If F(z) belongs to JO(E),
then

[ 1F@ @ Pdu) < [ 1R ) B () e

and equality holds if, and only if, (S, S) = 0 when S(z) == zF(z). Equality
holds for every F(z) in J¢(E) if, and only if, p(E, E) == 0, which is always the
case if the domain of multiplication by z is dense in J8(E).

Proof of Theorem 32. Let (P,(2)) be a sequence of polynomials of Pélya
class as in Problem 97. If E,(z) = E(2)P,(z), then B, (z) does not belong
to J&(E,) and

[E(z) + E*(2)W(2)]/[E(z) — E*(2)W(2)] = lim i4,,(2)[B,(2)
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for y > 0. By Theorem 22,
|72 1P B )12t = 3 1F () [E,(8)12 ] (1)

for every F(z) in J¢(E,), where the summation is over the real numbers ¢
such that ¢,(¢#) = 0 modulo #. By Problem 97, F(z) — P,(z)F(z) is an
isometric transformation of JC(E) into JC(E ). It follows that

[221P@IE® Pt = 3 1FOIEE) ) g2

for every F(z) in JE(E). Since

for y > 0 by Problem 89,

E(z) + E*(2)W(z) imY 1 Y
Pu(t) (8 — )% 47

E(z) — EX(2)W(z)
for y > 0. Let u,(x) be a nondecreasing step function whose points of
increase are the points where ¢, (x) = 0 modulo = and which increases by
w[@,,(x) at each such point. Choose the functions so that u,(0) = 0 for
every n. As in the proof of Theorem 4, (u,(x)) is a bounded sequence of
numbers for each real x. By the Helly selection principle, we can suppose
the sequence of polynomials chosen so that p(x) = lim yu,(x) exists for all
real x.
If §(z) satisfies the hypotheses of the theorem, then

S(t) dt

(t =)+ 52

for y > 0 by the proof of sufficiency for Theorem 27. If §,(2) = P,(2)8(z),
then by Theorem 25 [G(z2)S,(w) — S,(2)G(w)]/(z — w) belongs to J(E,)
whenever G(z) belongs to J8(E,). By Theorem 27 there exist entire functions
C,(z) and D ,(z), which are real for real z, such that

4,(2)Dy(2) — B,(2)C,(2) = S,(2)57(2),
Re [4,(2)D,(2) — B,(2)C,(2)] = }1S,(2)|* + § IS5 (2]

D(z) —}— zC yJ-+oo
CAz) -

for all complex z. Choose them as in the proof of the theorem so that

dt
(t — %)% 4 »?

n

Re

n(z) + ZC }’ +o
REEr e R
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for y > 0. It follows that
[D,(2) + iC,(2)1[4,(2) — iB,(2)] = [D(2) + iC(2)]/[4(2) — iB(2)] + ih
for some real constant %, and hence that

[D,(2) — hB,(2)] + i[C,(2) — hd,(2)] = P (2)[D(2) +iC(2)].

Since we canreplace C,,(2) by C,(z) — k4 ,(z) and D ,(z) by D, (z) — kB (2)
without altering the defining properties of these functions, we can suppose
them chosen so that D (z) - iC,(z) = P,(2)[D(z) + iC(z)]. By the proof
of Theorem 27,

Rei 2 _ 5 L
B,(2) Plt)

for y > 0. In other words,

L [D(2) +iC(2)]P.(2) + [D(2) — iC(2)1P5(2)
[4(z) — B(2)1P,(2) — [A(2) + B(IP;(2)
P dp()

yj‘-ﬁ-oo

(t—x)?2+ 7
for y > 0. Since S(x)/E(x) is a continuous function of real x and since
puix) = lim p,(x) for all real x,

S() |* du(t)
2|2

S0 ?
£,(1)

J
7+

S()

2 dun(t)
(t—x)% 4+ 5°

(t — \7 n—w 7T
for y > 0. By the arbitrariness of ¢ and b,

P e w(t) [D(2) + iC(2)] + [D(z2) — iC(2)]W(2)
S = x>2 5 =R MG ()] — [ - B@IWE)

for y > 0. Whenever a < b are finite,

LD(z) +iC(2)] + [D(2) — iC1W(2) _ p 4w |SU) 2 du(l)
[4(z) — iB(2)] — [A(2) +iB(2)]W(z) 7l E(t) (¢ — %) 4"
J e |SQ@) P dun L2 Pdp,(0)
<nl~oo[ f E@ |t — %)+ f (t—x)2+y}'

By Problem 95 and the arbitrariness of ¢ and b, there is a number p(S, §) =0
such that the expression on the left is equal to p(S, S)p. In other words

[P(2) +iC(2)] + [D(2) — i(2)]W(2)
[4(z) — iB(2)] — [A(2) + iB(2)]W(2)

=8 Sy +2 [
T ©

P dp)
=+

E@)

S(?)
(
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for y > 0. The definition of (S, §) is such that

f+eo IS E@Pdpa(t) lrw IS [E®)2dp )

ﬁ(S: S) lim © (t—x)2 -i‘)/z —» (t—x)z _I_yz

n—o T

for y > 0.

If §(z) and T(z) are entire functions such that [F(z}S(w) — S(z)F(w)]/
(z — w) and [F(z) T(w) — T(z)F(w)]/(z — w) belong to J(E) whenever
F(z) belongs to JU(E), define

4p(S, T) = p(S + T, 5 + T) — p(S — T, S — T)
+ip(S +iT, S +iT) —ip(S —iT, S — iT).
Then p(S, T) is linear in § for each fixed T, p(7T,S) = p(S, T)~, and
p(8, §) = 0 for all §(z). In other words, #(S, T') has all the properties of an
inner product except that it is not strictly positive. The Schwarz inequality

and the triangle inequality are valid for such products.
If §(z) belongs to JC(E), then

o [P(2) 4 iC(2)1P(2) + [D(2) — iC(2)1P,(2)
[4(z) — 1B(2)|P,(2) — [A(2) + iB(2)]P}(z)

f+oo IS(@)/E(t)|%d ., (2)
(=247

< 1(m) [* 1S IE@ 1w, 0

< 1Y(m) [ "7 IS B
Since n is arbitrary,

2

[D(2) +iC(2)] + [D(2) = iCIW(2) _ 1 el SO 2,

R M@ —iBa)] — [A() + BEIWE) = m 3-a| Q)

and hence

PS8y < 1/(Wy)f IS(6)[E(2)[2ds.

Since y is arbitrary, p(S, §) = 0 in this case. By the Schwarz inequality,
p(S, T) = 0 whenever S(z) or T(z) belongs to JC(E).
If S(z) = zG(z) where G(z) belongs to J0(E), then
[F(2)S(w) — S(2)F(w)]/(z — w)
= w[F(2)G(w) — G(2)F(w)]/(z — w) — G(2)F(w)
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belongs to J&(E) whenever F(z) belongs to J8(£). Ify > 0,

. s e [SOEQRAR) | e |GOLEO )
[ i E@Rdp = [77 S e [T SR
i [ SOUEO 1y

—w 12 +))2 - WP(S, S)

. +eo |G () E()Pd (1)
+ lim f_w —aay
_Jmf B|2dp,(t) — mp(S, S)

_fw 1)JE(1)|2dt — mp(S, ).

From this we see that
[ 16@iE@Prdue < [T 160E@O P

for every element G(z) of J¢(E). Equality holds if, and only if, (S, §) = 0
when $(z) = zG(z). In particular, equality holds whenever G(z) belongs
to the domain of multiplication by z in J0(E). Equality follows when G(z)
is in the closure of the domain of multiplication by z.

If p(E, E) = 0, then p(E*, E*) = 0 and p(S, §) = 0 whenever §(z) is a
linear combination of A(z) and B(z). Since

mzK(w, z) = B(2)A(w) — A(z)B(w) + wdK(w, z),

we obtain p(S, S) = 0 by the triangle inequality whenever $(z) = zK(w, z)
for some number w. It follows that

[ FO)R(w, 1) |EG) -2du(t) = (F(0), K, 1)) = Fla)
for every F(z) in JE(E). The identity implies that
[ rw e rdue) = [* 1R 1B 1R

whenever F(z) is a finite linear combination of functions of the form K(w, z).
Since such combinations are dense in JC(E), the same formula holds for every
F(z) in (E).

33. ISOMETRIC INCLUSIONS OF SPACES X(E)

The space g(M) is denoted J(M) when S(z) = 1. The theory of such
spaces is used to determine the isometric inclusions of J¢(E) spaces.
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THEOREM 33. Let J(E(a)) and Je(E(b)) be given spaces such that
Je(E(a)) is contained isometrically in Je(E(b)) and E(a, 2)/E(b, z) has no
real zeros. Then there exists a matrix M(a, b, z) of entire functions such that
a space J&(M(a, b)) exists and such that

(A(b, 2), B(b, 2)) = (A(a, 2), Bla, 2))M(a, b, 2).
The transformation

(ws

) —V2[A(a, 2)F,(2) + B(a, 2)F_(2)]

takes JC(M(a, b)) isometrically onto the orthogopal complement of J¢(E(a))
in JC(E(b)).

Proof of Theorem 33. The function §(z) = E(a, z) has the property that
[F(z)S(w) — S(2)F(w)]/(z — w) belongs to JC(E(a)) whenever F(z) belongs
to Je(E(a)). Since J&(E(a)) is contained in JE(E(b)), it follows from the
proof of Theorem 25 that [F(z)S(w) — S(2)F(w)]/(z — w) belongs to
J(E(b)) whenever F(z) belongs to J(E(b)). By Theorem 27 there exists a
transformation F(z) — F(z) which assigns an entire function to each element
of J(E(b)) in such a way that the identity

wF (@) G(f)~ — wF () G()~ = (F(t)S(a), [G()S(B) — S(OG(A/(t — f))
— ([F(#)S(a) — S(OF()][(t — ), G(1)S(B))
+ (o — BYF()S(w) — SOF(@)]/(t — o), [G)S(B) — SOGB)/(E — B))

holds for all elements F(z) and G(z) of J¢(E(b)) and all complex numbers
wand . IfF(z)isin J(E(b)) and if G(z) = [F(2)S(w) — S(2)F(w)]/(z — w)
for some number w, then G(z) = [F(2)S(w) — S(2)F(w)]/(z — w). It is
easily seen that the transformation having these properties is unique within
an added real multiple of the identity transformation. By Problem 83 the
transformation F(z) —iF(z) has these properties when it is restricted to
Je(E(a)). Therefore there exists a real constant £ such that F(z) = iF(z) +
kF(z) for every F(z) in J¢(E(a)). Since we can add a real multiple of the
identity transformation to the transformation F(z) — F(z) without altering
its defining property, we can choose it so that F(z) = iF(z) whenever F(z)
is in $(E(a)).

By Theorem 27 there exist entire functions C(b, z) and D(b, z), which
are real for real z, such that

A(b, 2)D(b, z) — B(b, 2)C(b, z) = S(2)S*(2),
Re [A(5, 2)D(5, z) — B(b, 20(5, 2)] =} IS(2)[* + } 1S*(2)]?
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for all complex z, [D{b, z) + iC(b, 2)]/E(b, z) has no real singularities,

lim Rey Y [D(b, i) + iC(b, iy)]1/E(b, iy) = O,
y—+o0
and

F(w) = (F(1), [S(t)S(w) — A(b, t)D(b, w) + B(b, 1)C(b, w)][[m(t — @)])

for every F(z) in Je(E(b)) and all complex numbers w. A space JCg(M (b))

1 (F(2)) .
exists by Theorem 28. By the proof of the theorem F(z) - —= (~ ) is an
’ =75 ko
isometric transformation of JC(E(b)) onto Jg(M(b)). By Problem 83,

1{F
F(z) — ( (Z)) is an isometric transformation of J8(E(a)) onto JCg(M(a)),

V/2\iF(z)
. A(a, z) B(a, 2)
Ma, z) = (—B(a, 2) Aa, z))'

It follows that g(M(a)) is contained isometrically in JEg(M(b)).
A{a, b, z) Bla, b, z)

Let M(a, b, z) =
et M(a, b, 2) (C(a, b, z) Dla, b, z)
functions defined by M(b, z) = M(a, z)M(a, b, z) at points where

) be the matrix of analytic

det M(a, z) = S(2)5*(z2)

has a nonzero value. Since the entries of M(a, z) and AM(b, z) are real for
real z, the entries of M(a, b, z) are real for real z. Since

det M(a, z) = §(2)S*(z) = det M(b, z),

we have det M(a, b, z) = 1. Since E(b, z)/E(a, z) has no real singularities
by hypothesis, and since C(b, z)/E(b, z) and D(b, z)/E(b, z) have no real
singularities by construction, the functions

Ala, b, z) + iC(a, b, z) = [A(b, z) + iC(b, 2)]/E(a, z),
D(a, b, z) — iB(a, b, z) = [D(b, z) — iB(b, 2)]/E(a, z)

have no singularities on or above the real axis. For all complex numbers
u) v, w’

M(b, 2)IM (b, w) — S(z)IS(w) (u) _ M(a, 2)IM(a, w) — S(2)IS(w) (u)
27(z — o) v 27(z — ) v
_ M(b, 2)IM(b, w) — M(a, 2)IM(a, w) (u)

27(z — )

0,
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belongsto g (M (b)) andisorthogonalto J€g(M(a)). If (;(z)) isinJeg(M(b))
and is orthogonal to Jg(M(a)), then (2)

() (i) =) 2= e())
In particular we obtain the inequality
(u)— M (b, w)IM (b, w) — M(a, w)IM(a, w) (u)

v

27(w — @) v

_ HM (b, ) IM (b,;:;)(t—_ Aiga 8 I (a; w) (u)

2
=0,

v

which implies that
[(M(a, b, w)IM({a, b, w) — I/[27w(w — ®)] =0

whenever M(a, b, w) is defined. By Problems 81 and 82, the matrix in-
equality implies that

|4(a, b, w) — iC(a, b, w)| < |A(a, b, w) + iC(a, b, w)|,
|D(a, b, w) + iB(a, b, w)| < |D(a, b, w) — iB(a, b, w)|

for w in the upper half-plane. Since 4(a, b, z) + iC(a, b, z) and D(a, b, z) —
iB(a, b, z) are known to. be analytic in the upper half-plane, and since an
analytic function cannot remain bounded in the neighborhood of an isolated
singularity, 4(a, b, z) — iC(a, b, z) and D(a, b, z) + i¢B(a, b, z) are analytic
in the upper half-plane. Since it is known that these functions have no real
singularities, it follows that the entries of A(a, b, z) are entire functions.

A space J&{M(a, b)) exists by Theorem 28.

F
If ( +(Z)) is a finite sum of functions
F_(z)

M(a, b, z)IM(a, b, w) — I

277(2 — l?))

s

F
+(Z)) is a finite sum of functions
F_(z)

for some numbers «, v, w, then M(a, z) (

M(b, 2)INI(b, w) — M(a, 2)IM(a, w) (u)

9m(z — @) v

it belongs to Jg(M(b)), and it is orthogonal to Jg(M(a)). It is easily

verified that
”M(a’ 2 (Iijg) (M (b)) - ”(f{g;)

% (Ma,p)
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Fo (z)
F_(z)

The same conclusion follows by continuity whenever ( ) belongs to the

F,
closed span of such special elements of J&(M(a, b)). But if (F Ezi) is an

element of Je(M(a, b)) which is orthogonal to such special functions,
u\~ F (w))
M +
() e (o)

() M) = () o

By the arbitrariness of u, », and w, M(a, z)(

Fy(2)
F_(z)
Since det M(a, z) = S(2)S*(z) does not vanish identically, this implies that
F,(z) and F_(z) vanish identically. It follows that the transformation

(F+(Z)) M2 (F+<z>)

F_(2) F_(z)

maps Je(M(a, b)) isometrically onto the orthogonal complement of g(M(a))
in Jeg(M(b)). By the construction of Jg(M(b)), the transformation

) vanishes identically,

F(z) 5
(F_(Z)) V[ A, 2)F,(2) + Bla, F(2)]

takes JC(M (a, b)) isometrically onto the orthogonal complement of JC(E(a))
in JC(E()).

PROBLEM 98. If J8o(M(a)) and J&(M(a, b)) are given spaces, let £ be the

F F
set of elements (F+EZ§) of Je(M(a, b)) such that AM(a, z)( +(Z>) belongs to
(z

F_(z2)

Jeg(M(a)). Show that £ is a Hilbert space in the norm

(?jg) = |[M 0 (Iiigg) zes(M(a)) + }!@jg)

[(Fi(2) — Fy(w)]/(z — w) F(2)
Show that ([F_(z) _F ()] — w),) belongs to £ whenever (Fj(z))

belongs to £, for every complex number w. Show that the identity
o= (o) (0~ o))

- Q%Et; o) (?8)%
o R )

2 2

£ Je(M{a,b))

[G_(1) — G_(B)/(t — B)
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holds for all elements (F“L(Z)) and (G+(z)) of £ and all complex numbers
F (z) G_(z2)

o and B. Show that the linear functionals defined on £ by

(i) = mma (7 5) =m0

are continuous for every w.

PROBLEM 99. In Problem 98 show that there exists a matrix

of entire functions such that

(D_(j)(w__i) )(v)

belongs to f for all numbers u, v, w, and such that the identity

NT(Fe@)\  /(F®)) D) + D) (w\\
(v) (F_(w)) _\(F_(t))’ 7i(i® — 1) (v)/
holds for all elements ( E ) of £. Show that ®(z) = —®(z) and that
Re @(z) = 4[®(z) 4+ ®(z)] = Ofory > 0. Ifuandvare complex numbers,

B uy . . . . .
show that ( ) D(2) ( ) is an entire function whose real part is nonnegative
Y v

in the upper half-plane and zero on the real axis. Show that the entries of
®(z) arelinear functions of zand that F, (z) and F_(z) are constants whenever

(F+(Z)

F_(z)) isin £. Hint: See Theorem 6.

34. A CONVERSE RESULT ON ISOMETRIC
INCLUSIONS

THEOREM 34, If J¢(FE(a)) and JC(M(a, b)) are given spaces, then there
exists a space JC(£(b)) such that

(A(b, 2), B(b, 2)) = (A(a, 2), B(a, 2))M(a, b, z),
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and E(a, z)/E(b, z) has no real zeros. The space J(E(a)) is contained in

JE(E(b)) and the inclusion does not increase norms. If there is no nonzero

constant (u) in J(M(a, b)) such that A(a, z)u 4 B(a, z)v belongs to
v

JC(E(a)), then JE(E(a)) is contained isometrically in J(E(b)) and the trans-

formation

I (z) —
(Fi(z)) — V2[4(a, 2)F.(2) + B(a, 2)F_(2)]

takes JE(M (a, b)) isometrically onto the orthogonal complement of Je(E(a))
in JC(E(D)).

Proof of Theorem 34. 1f S(z) = E(a, z) and if

A(a, z) Bla, z)),

Mia, 2) = (—~B(a, 2) A(a, 2)

a space Jg(M(a)) exists by Problem 83, and the transformation
1 (F(z
i \75(1';(2)))
is an isometry of JE(E(a)) onto Jg(M(a)). There is no nonzero constant (u)
in Jo(M(a, b)) such that M(a, z) (Z) belongs to Jg(M(a)), for this implies
that A(a, z)u + B(a, z)v belongs to (E£(a)) and that
i[A(a, z)u + B(a, z)v] = —B(a, z)u + A(a, 2)v.

Since A(a, z) and B(a, z) are linearly independent, v = . Since v = Ju
by Problem 85, we obtain 4 = v = 0. F,(2)
By Problems 98 and 99, there is nononzero element (F+( )) of Je(M(a, b))
(z

such that M(a, z) (F+E ;) belongs to Jg(M(a)). Let JC be the set of all pairs

() + a2 (5142

Fi(2)
F _(z)
M(a, b)). We can define a norm unambiguously in 3 by

t +(t
” t o 1) (G_(t

) is in Jeg(M(a)) and (?8) is in

of entire functions such that (

2

2
JCs(M(a)) “ G_ (t

Je(M(a,b))

[
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If M(b, z) = M(a, z)M(a, b, z), then
M(b, 2)INI(b, w) — S(z)IS(w) (u) _ M(a, 2)IM(a, w) — S(z)15(w) (u)

2m(z — ) v 27 (z — ) v
Mla, b, 2)IM(a, b, w) — I _
+ Ml 2) 27)r(z —(- ) : (a, w) (u>

belongs to J¢ for all complex numbers u, v, and w, and

() o) = () =2 0)

for all elements (ijg) — (%8) + M(a, 2) (gigz) of J¢. Since

(1)— M(b, w)INI(b, w) — S(w)IS(w) (1)

0 2m(w — ) 0
(st

for all complex w, we obtain the inequality

B(b, )4 (b, w) — Ab, w)B(b,w) _ Bla, )A(a, w) — Ala, w)B(a, )

m(w — W) m(w — )

>0

when w is not real. It follows that E(b, z) = A(b, z) — iB(b, z) satisfies the
inequality |E(b, x — iy)| < |E(b, x + 1) for y > 0. A space K(E(b))
therefore exists. Since the entries of M(a, z)/S(z) have no real singularities
and since the entries of M(a, b, z) are entire functions, the entries of M(b, z)[
S$(z) have no real singularities. It follows that [D(b, z) + iC(b, 2)]/E(b, z)
has no real singularities and that E(a, z)/E(b, z) has no real zeros. A space
Jeq(M(b)) exists by Theorem 28, and it is equal isometrically to J¢ by the
uniqueness part of the theorem. The space JCg(M(a)) is contained iso-
metrically in J&g(M (b)) by the construction of J€.

IfF(z)isin J8(L(a)), then (?EZ;) isin Jeg(M(a)) and hence in J0g(M(5)).
iF(z
By the proof of Theorem 28, F(z) belongs to J¢(E(b)) and

()l

Jg(M (b))

|lF(t>”§C(E(b)) <4 - HF(t)”?mE(a)) .

So Je(E(a)) is contained in JE(E(b)) and the inclusion does not increase

0
norms. By the proof of Theorem 28, the inclusion is isometric if (S( )) does
z
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not belong to Jeg(M(b)). Ifit does belong, we can write
(s0) = () 209G 0)

o (Fe(2)Y . G.(z)
with (F (z)) in J8g(M(a)) and (Gi(z)) a nonzero element of J&(M(a, b)).

[Gi(2) — Go(w)][(z — w)
[CG_(2) — G_(0)]/(z — w)
JE(M(a, b)) by Theorem 28, and a calculation will show that

[Gi(2) — G (w)]/(z — w))
[G_(2) — G_(w)]/(z — w)

belongs to Jg(M(a)). It follows that this element of JE(M(a, b)) vanishes

If w is a complex number, then < ) belongs to

M(a, z)(

G
identically. Therefore (G+EZ;) = (u) is a nonzero constant in JC(M(a, b))
z v

such that —F, (z) = A(a,*z)u + B(a, z)v belongs to JC(L£(a)).

PROBLEM 100, Let J(E(a)) and J(E(b)) be given spaces such that
JE(E(a)) is contained isometrically in JC(E(6)) and E(a, z)/E(b, z) has no
real zeros. Let JC(AM(a, b)) and J(M,(a, b)) be spaces such that

(A(b, z), B(b, z)) = (A(a, 2), B(a, z))M,(a, b, z)
for k£ =1, 2. Show that M(a, b, z) = My(a, b, 2).

PROBLEM 10]l. IfJ(M(a,c)) is a given space and if there exists a constant
(u) of norm 1 in J8(M(a, ¢)), show that dv = 7y and that a space J(M(a, b))
v

exists,
M(a, b, 2) = (1 — 2qrudz 2uiiz )

—2mviz 1 4+ 27uvz

Show that JC(M(a, b)) is contained isometrically in J€(M(a,c)), that

M(a, ¢, z) = M(a, b, z)M(b, ¢, z) for some space JC(M(b,c)), and that
F F

(Figg) — M(a, b, z) (FJ_FEZ) is an isometric transformation of JE(M(b, ¢))

onto the orthogonal complement of J&(M(a, 6)) in J(M(a, c)).

PROBLEM 102. Let JC(£(a)), J(E(c)), and JE(M(a,c)) be given spaces
such that
(A(e, 2), B(¢, 2)) = (A(a, 2), B(a, 2))M(a, ¢, 2)



Th 34 A CONVERSE RESULT ON ISOMETRIC INCLUSIONS 105

and JE(E(a)) is not contained isometrically in JE(E(c)). If M(a,c,z) =
M(a, b, z)M(b, ¢, z) as in Problem 101, show that there exists a space
JC(E (b)) such that

(A(b, 2), B(b, z)) = (A(a, 2), B(a, z))M(a, b, 2)

and JE(F (b)) is contained isometrically in JE(E(c)).

PROBLEM 103. Show that the functions ¢4, n integral, are a complete
orthogonal set in L2(0, 2m). If g(x) belongs to L*(0, 2m), if fozﬂ g(t)dt = 0,
and if f(x) = f: g(t)dt, show that

[7" a(yebtemiat = —i(n + 3) [T riyebitenar
for every n. Show that

[T 17w <4 [ g

Hint: For completeness use SSPS Theorem 34.

PROBLEM 104, If g(x) belongs to L%(a, b) where (a, b) is a finite interval,
it [* g(t)di = 0, and if f(x) = [7 g(1)d, show tha

[P A0k < (0 — @ [ le() P

PROBLEM 105. A real valued, continuous function f(z), defined in a
region (), is said to be subharmonic in the region if

Flw) < 1@m) [ fw + act)a

whenever the closed disk |z — w| < a is contained in the region. If f(2) is
subharmonic and has continuous second partial derivatives with respect. to
x and y, show that

Ef(x+i)+-aif +i)—1-mi{_1_ 2”f(z+aeit)dt—f(z)} >0
D2 Y oy? =+ v “;\0 a? |27 70 o

for all complex z. Show that the maximum of two subharmonic functions is
a subharmonic function. Show that log* |g(2)] is a subharmonic function if
g(z) is analytic in Q.

PROBLEM 106. Letf(z) be a subharmonic function defined in the complex

plane, and let
1/n

Jul2) = nzf fz + 1) |¢]at.

—1/n
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Show that f,(z) is a subharmonic function for every n =1,2,3, -+, and
that f(z) = lim f,,(z) uniformly on every bounded set. Show that

0 . 1/n .
_a‘;cfn(x + @) = n? ——l/nf(x + iy 4+ t)sgntdt

s a continuous function. If f(x + ¢y) has a continuous partial derivative
with respect to x, show that f,(x -+ #) has a continuous second partial
derivative with respect to x given by

82 . i/n a .

8—x2f”(x 4 4y) = n? f—l/né?cf(x 4 iy + t) sgn tdt.
If f(x + iy) has a continuous partial derivative with respect to », show that
fo(x 4 iy) and (9/0x)f,(x + iy) have continuous partial derivatives with

respect to y given by

3 . 1/n a .
5 Jole D) =t [U o Pl 0

0 0 } 0 0 )
a—yé;cfn(x-l-l})) —aé}fn(xﬁ—lj’)

. 1/n E .
=n f—l/n % JSx 4 iy + ) sgn ¢ dt.
If f(x 4 y) has a continuous partial derivative with respect to y, show that
fo(x -+ iy) has a continuous second partial derivative with respect to y
given by

2

0
5 Salx +0) =1

. ,
5 2 [T O 1)l

—1/n ayz

PROBLEM 107. Let f(z) be a nonnegative subharmonic function, defined
in the complex plane, which is periodic of period 27:. Construct a sequence
(f.(2)) of nonnegative subharmonic functions, defined in the complex plane
and periodic of period 27, with these properties:

(1) f(2) = lim f,,(z) uniformly on bounded sets.

(2) fo(x 4 1») has continuous second partial derivatives with respect to
x and y for every n.

(3) fu(u + iv) = 0 whenever f(z) vanishes in the square u — 2/n <
¥ <u+2nv—2n<y<v+ 2fn

PROBLEM 108. Let f(x) be a nonnegative, continuous, convex function
defined in a half-line [a, ©0). Show that f(¥) is bounded on the half-line if
lim inf f(x)/x = O.

T 0
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PROBLEM 109. Let J¢(£(a)) and JC(E(b)) be given spaces which are
contained isometrically in a space L2(u). Assume that E(e, z) and E(b, z)
have no real zeros and that E(b, z)[E(a, z) is of bounded type in the upper
half-plane. Show that J0(E(a)) is contained in JC(£(b)) if JE(£(D)) fills L2(w).

35. ORDERING THEOREM FOR SUBSPACES
OF X(E)

The theory of subharmonic functions is used to obtain the ordering
theorem for Hilbert spaces of entire functions. )

THEOREM 35. Let J(E(a)) and JC(E(b)) be given spaces which are
contained isometrically in a space L2(u). If E(b, z)[E(a, z) is of bounded
type in the upper half-plane and has no real zeros or singularities, then either

Je(E(a)) contains JC(E(b)) or (E(b)) contains JC(E(a)).

The proof depends on Carleman’s method of estimating the size of the
set on which an entire function of zero exponential type remains bounded.

LEMMA 7. Let F(z) be a given entire function, let
2nQ(r)? = | " [log* |F(re™) 124,

and let 27rP(r) be the sum of the lengths of the f-intervals on which |F(re*?)| >
1. If0 < r <s < tand if @(r) > 0, then

2 (¢ U= 1P N =1y VL
Q) L exp (L vLP(v) dv)u du
< @)t Js exp (fu v_lP(v)‘ldv)u—ldu
k3 s
g [t o1 -1 —1
+ Q1) fs exp (L v 1P(v) dv)u du.

LEMMA 8. Lct Fi(z) and Fy(z) be entire functions such that

. 27 .

lim 72 fo [log* | F,(re)[]2d6 = 0

fork=1,2.1If
min (|Fy(x + )], | Fy(x + )]) < [y

for all complex z, then either F,(z) or F,(z) vanishes identically.
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Proof of Lemma 7. By Problem 105, f(z) == log" |F(exp z)| is subharmonic
in the complex plane. The function is nonnegative and periodic of period
27ri. Choose asequence (f,,(z)}) of approximating functions as in Problem 107,

Let
2mg,(x)2 = [ fuls + )y

and let 27p,(x) be the sum of the lengths of the y-intervals, 0 < y < 27, on
which f,(x + i) > 0. We first obtain an inequality for p,(x) and ¢,(x).
From the definition of ¢,(x) we obtain

) = g [ Sl ) e fule o+ )5

Differentiation under the integral sign is permissible because the integrand
has a continuous partial derivative with respect to ». Differentiating again

we obtain
1 an a

02()* + () g5 (0) = 5= | 7 = fulx + D) ——aa Sulx + )y
7T ¥ x
o |7 Al + ) L fe + )y
27 Jo 77 ox2’"
By the Schwarz inequality,

, 1 rer 9 ? .
10,0 < a0 o [T Sl D) g Sl + D)y

If ¢,(x) > O we can conclude that
2r 82 .
BV = o [Tl ) Sl )

Since f,(x -+ iy) > 0 and since
2

. 02 .

by Problem 105,
0% )
0l = = 5 [ Sl ) gl - )

Since f,(x) is periodic of period 27, we can integrate by parts to obtain

1 0
%mmm_zf 3y ) 5 Sl + D)

By Problem 104,
90(%)45(%) = ap (%) g, (%)%
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It follows that
[9.(2) 4, ()] = ¢,(*)* + ¢a(x) g5 (%)
= 4p(%)* + 1pa(%) 7P, (x)*
= p(0) 7 ga(*) g0 (*)].
This implies that
) gifexp ([ a1

is a nondecreasing function of x. But this expression is the derivative of
3¢, (%)% with respect to the increasing function

[7exp ( N p”(v)—ldv) du.

Since the derivative is nondecreasing, ¢,(x)2 is a convex function of

f: exp ( fb“ pn(p)ﬂdv) du.

If @ < b < ¢ are numbers which belong to an interval in which ¢,(x) > 0,
then

0 [ exp ([} pa(0) 1)
< 0u@? [} exp ([ pat0) o)

02007 [} exp ([7 o) 1a0)
by convexity. If

1 27 .
09 =5 [+ D),

then ¢(x) = lim ¢, (%) as n — o0 since f(x + iy) = lim f, (¥ + ) uniformly
on bounded sets. If 27p(x) is the sum of the lengths of the y-intervals,
0 <y < 2, in which f(x 4 &) > 0, then p(x) = lim p,(x) uniformly on
finite intervals by Problem 107. In any interval where ¢(x) > 0, we have
g.(%) >0, p,(x) > 0, and

Jy e (f:f’(”)_ld”) du = lim [ exp (fb“pn(v)—ldo) du.

Soif a << b <C ¢ are numbers which belong to an interval in which ¢(x) > 0,
then

g(b)? f exp (f: ﬁ(v)*ldv)du
< @ [} exp (J} oo
o 000® [! exp ( [2 o)1)
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With a change of notation the inequality reads

Q(exp b)2 f exp ( [ Plexp v)~1du) du
< Q(exp a)? fa” exp ( fb“ Plexp y)—ldv) du

+ Q(expo)? [ exp ( | Plexp U)Aldv) du.

An equivalent inequality is

Q(exp b)? fc exp (f:zs Z v—lP(v)—ldv> du

< Q(exp a)? Lb exp (Jexp ¢ v—lP(v)—ldv) du

exp b
c exXp u
+ Qexpc)? fb exp (fexp . v“lP(v)“ldv) du.
This can also be written as

exp ¢

Qerp 8|

expa

exp (f: v IP(v) —1dv) wdu
< Q(exp a)? fe: Z exp (f: v—lP(v)—ldv)u_ldu

e
exp ( f : vtP (v)—ldv) wtdu.

exp

+ Q(exp C)ZJe

Xp b

The lemma follows on making a change of variable.

Proof of Lemma 8. Let P (r) and Q,(r) be defined for F,(z) as in Lemma 7,
k = 1,2, The hypotheses imply that either |Fy(re®®)| << 1 or |Fy(re®®)| < 1
when [sin 0] > 1/r. Since |sin 8] > |20/w| whenever —}m < 0 <}, we
obtain

Pi(r) + Py(ry <1 + 1.
It follows that

PL(r) + 1[Py(r) = 4[[Py(r) + Py(r)] = 4r(r + 1).

We use the inequality to show that @,(r) or @,(r) is bounded.

Argue by contradiction, assuming that both functions are unbounded.
Choose a half-line [, ) in which both functions are positive. By Lemma 7
and Problem 108, there exists some number ¢ > 0 such that

Qp(r)? =¢ f: exp (f: v‘lPk(v)—ldv)u—ldu
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for r > a, k = 1, 2. By the convexity of the exponential function,

3O()* + 3Qu(r)® = ¢ [T exp ([ 2 Puo) + Pao) T do)u i
= [ exp (j“ 2o -+ 1)~tdo)utdu
> cf (a + 1)=2(u + 1)%udu
> dolr + 1)%f(a + 1) — e,

which contradicts the growth hypotheses on Q;(r) and @y(r). So Q4(r) or
Q,(r) is bounded. .

If Q,(r) is bounded, then F,(z) is a constant by Liouville’s theorem. For
if |z] < ea where € < 1,

a® — |z|? fgﬂ log |F;,(ac®®)|df
27

< (14 OJ(1 — & 1/(2m) ff log* | F(ae'®)|d0
= VQ(@)(1 + ¢)/(1 — ¢

log |F(2)] < 0 lae® — z|?

by the Schwarz inequality. By the arbitrariness of a and e, Fy(z) is bounded
in the complex plane and hence a constant.

We now know that one function, say F,(z}, is a constant. If F;(z) does
not vanish identically, the hypotheses imply that lim Fy(zy) = 0 as|y| — oo.
By Problem 38, F,(z) is a constant and so vanishes identically.

Proof of Theorem 35. The theorem follows from Problem 109 if J¢(E(a)) or
Je(E(b)) fills L2(u). Otherwise consider first the case in which the mean type
of E(b, z)/E(a, z) is positive. Then

tim sup |E(a, )[E(b, )| = 0
Y=+
by Theorem 10. By Theorem 26 and Problem 69, [F(z)E(a, w) —
E(a, 2)F(w)]/(z — w) belongs to JC(E(b)) whenever F(z) belongs to JC(£(5b)).
Since G*(z) belongs to JC(E(b)) whenever G(z) belongs to JC(E(D)),

[F(2)E*(a, w) — E*(a, 2)F(w)][(z — w)

belongs to J(E(b)) whenever F(z) belongs to J(E(4)). On taking a linear
combination of these two functions, we obtain [E(a, z)E*(a, w) —
E*(a, 2)E(a, w)]/(z — w) inJC(E(b)). Thereforeany finitelinear combination
of the functions

K(a, w, z) = [B(a, 2)A(a, w) — A(a, 2)B(a, w)]/[7(z — @)]
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belongs to JC(E(b)). Since such linear combinations are dense in J¢(E(a)),
it follows that JC(E(a)) is contained in JE(E(b)). A similar argument will
show that JC(E(b)) is contained in JE(£(a)) if the mean type of E(q, z)/
E(b, z) is positive. In the remainder of the proof we assume that E(b, z)/
E(a, z) has zero mean type in the upper half-plane,

Let P(x) be any element of L*(x) which has norm 1 and is orthogonal to
Je(E(a)). Let @(x) be any element of L2( ) which has norm 1 and is orthog-
onal to J(E(D)). If F(z) is in J&(E(a)), then by the proof of Theorem 26
there exists an entire function f(z) such that

) = f+oo F(t)E(b, w) — E(b, t)F(w)

—o© t—w

Q) dp(1),

S(@)E(b, w

v FOEX (b, ) — BA(b, OF (@) 50

S)E*(b,0) = |

—w I —w

for all complex w. By the proof of Theorem 26, f(z) and f*(z) are of bounded
type in the upper half-plane. Write

+o FOQ)du(t)  F(z) Ea, 2) f+oo E(b, 0)Q(t)du(t)

£ =] 2 E(gz) E(b, 2) -0 t—z

—w ¢
for y > 0. By Problem 65, the integrals represent functions which have
nonpositive mean type in the upper half-plane. Since E(a, z)[E(b, z) has
zero mean type by hypothesis and since F(z)/E(a, z) has nonpositive mean
type by the definition of JE(E(a)), f(z) has nonpositive mean type in the
upper half-plane. A similar argument will show that f*(z) has nonpositive
mean type in the upper half-plane. By Problems 35 and 36,

lim 72 [*7 [log* | £(re*)[1240 = 0.
[and-)
In what follows we assume that F(z) does not vanish identically, so that these

constructions are nontrivial.
If G(z) is in JE(L(d)), then for the same reasons there exists an entire

function g(z) such that
lim r2 f ¥ [log* |g(re®)[1%d0 = 0

>0

and such that
g(w)E(a w) _ J‘+oo G(t)E(a, w) — E(a, t)G(w’)

—o© t—w

P(t)du(t),

P()du(t)

G EX(a, w) — [ SO0 0) — BT@ DOw)

— t—w
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for all complex numbers w. We assume that G(z) does not vanish identically.
As in the proof of Theorem 26,

Sa)(w) = [ TOC = AT Gy,
() — [+ SOOI = POB) by,

for all complex numbers w. By the Schwarz inequality in L#(u),
[f(2)G(2)] < IPIF@N 1G] + I6OIEFE)],
lg(2)F(2)] < DIPIGONF(2)] + 1F(@)] 1G(2)]

for nonreal numbers z. It follows that

Il < WFOINA @]+ 160 /1e(2)]

at all points zwhere ||[F(t) || |G(z)| 4+ [|G(t) || |[F(z)|isnonzero. Theinequality
follows by continuity for all nonreal z. It implies that

min ([ S/ IFO, $ls@IIGEHD) <[y

By Lemma 8, either f(z) or g(z) vanishes identically.

If f(z) does not vanish identically for some choice of F(z) and @ (), then
2(z) must vanish identically for every choice of G(z) and P(x). Thus either
f(z) vanishes identically in all cases or g(z) vanishes identically in all cases.
In the remainder of the proof we assume for definiteness that g(z) vanishes
identically in all cases. Then

o Fq, G(t)E(a, w) — E(a, t)G(w)

—© i —w

P(1)du(1)

whenever G(z) is in J(E(b)) and P(x) is an element of norm 1 in L?(y) which
is orthogonal to J&(E(a)). By the arbitrariness of P(x), [G(z)E(a, w) —
E(a, 2)G(w)]/(z — w) coincides with an element of J¢(E(a)) almost every-
where with respect to u. By the proof of Theorem 26, the function actually
belongs to J(E(a)). So [G(z)E(a, w) — E(a, z)G(w)]/(z — w) belongs to
Je(E(a)) whenever G(z) belongs to JC(E(b)).

If J(E(b)) is not contained in JE(E(a)), let L(z) be an element of JE(E(0))
which does not belong to J¢(E(a)). Let P(x) be an element of norm 1 in
L2(u) which is orthogonal to J¢(E(a)) but which is not orthogonal to L(z).
Since

zL(z)E(a, w) — E(a, z)wL(w)

z—w

= L(z)E(a, w)

L(z)E(a, w) — E(a, z)L(w)
z—w

+ w
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where [L(z)E(a, w) — E(a, z)L(w)]/(z — w) belongs to J8(E(a)), we obtain

P@t)du(t).

Ela, w)(L(2), P(3)) = fj: tL(t) E(a, w)t : f(a, HwL(w)
So when y > 0,

(L), P(1)) =

1o HOPOIG) _ o) G ) [ Bl 0Pt

o t—i  E(b,D) Eap) S i

By the Schwarz inequality,

f+oo (L) P du(t)* _ f+oo £ | L(#)|%du(?)

—o0 i — ly T J—w 12 +y2 ?
fm E(a, ) PO dp(0]* _ fﬂo |E(a, ¢)|2du(t)
— t— iy = Jeoo 2 4 2 .

By the Lebesgue dominated convergence theorem,

lim f+oo tL(6) P(t)du(t) 0, lim f+oo E(a, t) P(t)du(t)

yodoot TP t—1 e t—vy

Since L(z) belongs to JC(E(8)),

=0.

lim sup Vy |L(iy)[E(b, )| < o0

¥+

by Theorem 20. Since (L(t), P(t)) = 0, we can conclude that

lim VY |E@®, )/E(a, iv)] = co.

Yy—++o0

But if F(z) belongs to JC(E(a)),

lim sup V3 | F(i9) [E(a, iy)| < oo

Y=+
by Theorem 20. It follows that
lim |F()/EG, )] = 0.

v+
The same conclusion holds when F(z) is replaced by F*(z). By Theorem 26,
[F(2)G(w) — G(2)F(w)]/(z — w) belongs to JC(E(b)) whenever G(z) belongs
to JC(E(b)) if F(z) is in J(E(a)).
But we already know that [F(z)G(w) — G(z)F(w)]/(z — w) belongs to
JC(E(a)) whenever F(z) belongs to JE(L(a) if G(z) is in JC(E(8)). IfJE(E(b)) is
not contained in J¢(£(a)), we can choose a nonzero element @ (z) of Je(E (8))
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which is orthogonal to [F(z)G(w) — G(2)F(w)]/(z — w) whenever F(z) is in
J(E(a)) and G(z) is in JE(E(b)). Then Q(z) is orthogonal to the domain of
multiplication by z in JS(E(b)}. By Theorem 29 the closed span of the func-
tions [F(2)G(w) — G(2)F(w)][(z -- w) with F(z) in J¢(E(a)) and G(z) in
Je(E(b)) fills the orthogonal complement of Q(z) in JC(£(b)). If JC(E(D)) is
not contained in J(E(a)), then Q(z) cannot belong to JC(E(a)). We show
that JS(E(a)) is contained in JC(E(b)).

It is sufficient to show that the closed span of the functions [F(z)G(w) —
G(z2)F(w)]/(z — w) with F(z) in J¢(E(a)) and G(z) in J(E(b)) is all of
Je(E(a)). So we need only show that there is no nonzero element P(z) of
Je(E(a)) which is orthogonal to all such functions [F(z)G(w) — G(2)F(w)]/
(z — w). Note that P(z) and Q(z) are then orthogonal to [P(z)Q(w) —
Q(2)P(w)]/(z — w) for all complex w. Since

(w — @) |[P()Q(w) — Q)P(w)]/(t — w) ||
= (P()Q(w) — Q) P(w), [P()Q(w) — QE)P(w)][(t — w))
— ([P()Q(w) — Q)P(w)]/(t — w), P()Q(w) — Q)P (w)) = 0,
[P(2)Q(w) — Q(2)P(w)]/(z — w) vanishes identically when w is not real.

It follows that P(z) and @(z) are linearly dependent. Since P(z) belongs to
JC(E(a)) and @(z) does not, P(z) = 0. The theorem follows.

PROBLEM 110. If }(M) is a given space which has finite dimension 7,
show that

1 — Bz oz ) (1 — B,z o,z
—ViZ 1+ 1812 o —VrZ 1+ ﬁrz

where (o), (B;), (y,) are real numbers such that o, >0, y, >0, and
¥y = Pyt for k=1,---,r. Hint: The transformation f(z) — [f(z)—
JF(0)]/z in (M) has an eigenvalue.

M(z) = ( ) M(0)

PROBLEM IIl. Let (M(a)), (M(d)), J(M(c)) be spaces such that
M(c, zy = M(a, z)M(a, ¢, z) and M(c, z) = M(b, z)M(b, ¢, 2)

for some spaces JC(M(a, ¢)) and JC(M(b,c)). If ¥ (M(c)) has dimension
0 or 1, show that either

M(b, zy = M(a, z)M(a, b, z)
for some space J&(M(a, b)) or

M(a, z) = M(b, z)M(b, a, 2)

Il

for some space JC(M (b, a)).
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PROBLEM [12. Let J(E(a)), JE(E(d)), and J(E(c)) be given spaces such
that
(A(c, 2), B(s, 2)) = (A(a, 2), B(a, 2)) M(a, ¢, 2),

(
(A(c, 2), B(c, 2)) = (A(b, 2), B(b, 2)) M(b, ¢, 2)
for some spaces J(M(a, ¢)) and (M (b, ¢)). Show that either
(A(b, 2), B(b, 2)) = (4(a, z), B(a, z))M(a, b, z)

and

Mla,c, z) = M(a, b, z)M(b, ¢, z)
for some space JE(M(a, b)), or i
(A(a, ), B(a, z)) = (A(b, z), B(b, z))M(b, a, z)
M(b, ¢, z) = M(b, a, z)M(a, ¢, z)
for some space JS(M(b, a)).

and

PROBLEM |13. Let J8(M(a)), 3(M (b)), and J&(M(c)) be spaces such that
M(e, z) = M(a, z)M(a, ¢, z) and M(c, z) = M(b, z) M (b, ¢, z)
for some spaces Je(M(a, ¢)} and J(M(b, ¢)). Show that either
M(b, z) = M(a, z)M(a, b, z)

(
for some space J¢(M(a, b)) or
Mla, z) = M(b, 2)M(b, a, z)
)

for some space JX(M(b, a)).

PROBLEM |14. The Schmidt norm of a matrix M = (

4 B\ .
) is defined
to be

¢ D
o(M)? = |A|* + |B]* + |C]* + | DI

Show that ¢(PQ) < o(P)o(Q) for all 2 X 2-matrices P and . Show also
that

L+ 0(PQ — 1) <[l 4+ o(P — DI[I +o(@ — D].

PROBLEM 115. LetJe(Af) be afinite dimensional spacesuch that AM(0) = 1.
Show that

M(0)] = (; i) >0
and that

M(z) = S M™(0) 2!

n=0

where ¢(M™(0)) < (« + p)"foreveryn=1,2,3,--:
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PROBLEM 116. IfJe(E(b)) is a finite dimensional space and if & > 0, show
that there exists a space Je(M(a, b)) such that M(a, b,0) = 1, B'(a, b, 0) —
C’'(a, b,0) =k, and

(A(b, 2), B(b, 2)) = (4(a, z), B(a, z)) M(a, b, z)

for some entire functions A(a, z) and B(a, z), which are real for real z,
such that

[B(a, 2)A(a, z) — A(a, 2)B(a, 2)]/(z — 2) =0

for all complex z.

36. EXISTENCE OF SUBSPACES OF X(E)
Similar results hold for infinite dimensional spaces.

THEOREM 36. If JC(E(b)) is a given space and if & > 0, then there exists
a space J&(M(a, b)) such that M(a, b,0) =1, B'(a, b,0) — C'(a, b,0) = 4,
and

(A(b, 2), B(b, 2)) = (A(a, 2), Bla, 2))M(a, b, 2)

for some entire functions 4(a, z) and B(a, z), which are real for real z,
such that

[B(a, 2)A(a, z) — A(a, 2)B(a, 2)]/(z — 2) =0
for all complex z.

Proof of Theorem 36. By Problem 116 we can restrict explicit proof to the
case in which JC(E(b)) has infinite dimension. We use Theorem 22 to
approximate by finite dimensional spaces. The argument requires the
choice of a real number « such that ¢®E(b, z) — ¢ ™E*(b, z) does not
belong to JE(E(b)). We assume for definiteness that « = 0, but a similar
argument can be given for any other choice of a. Let ¢(b, #) be a phase
function associated with E(b, z) and let (¢,) be an enumeration of the real
numbers ¢ such that ¢(b, t) = 0 modulo 7. The functions {B(b, z)[(z — t,)}
are then an orthogonal basis for J(£(b)) and

IB(5, t)/(t — )P = WB/(b: tn)/A(b’ ty)

for every n. If the span 3¢, of the first n elements of the basis is considered as
a Hilbert space in the metric of JC(£(b)), then

1 » A(b,t,) B(b, z) B(b
Kb w2y =2 § L0t 70 2 PG 1)
e B'(b, 1) z— 8, W — &
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belongs to J¢, as a function of z for every w and
Fw) = (F(t), K, (b, w, £))
for every F(z) in J€,. If we write

& A(b, 4) B(b, 2)
A,n<b, Z) ngl m -—-‘—'—'Z — tk —I“ }lnB<b, Z)

for any real number 4, then 4 ,(b, z) is an entire function which is real for
real z and
K, (b, w, z) = [B(b, 2)4,,(b, w) — A,(b, ) B(b, w)][[rr(z — )]

for all complex z and w. Since K ,(b, w, w) > 0 when w is not real, a space
J(E (b)) exists by the proof of Theorem 23, E, (b, z) = 4,(b, z) — iB(b, z),
and the space is equal isometrically to J€,. Since the starting orthogonal set
is complete, the union of the spaces J¢(E,(8)) is dense in JC(E(d)). Since
K (b, w, z) is the projection of K(b, w, z) in Je(E (b)) for every n,

Kb, w, z) = lim K, (b, w, z)

N—> O
in the metric of JE(E(b)) for every w. It follows that
B(b, z)A(b, w) — A(b, 2)B(b, w)
= lim [B(b, 2)4,(b, w) — 4,(b, 2)B(b, w)]

Nn—> 0
for all complex z and w. If the numbers (4,,) are chosen so that

Re A(b, w)/B(b, w) = lim Re A, (b, w)[B(b, w)

N—> O

for some nonreal number w, then A(b, z) = lim 4 (b, z) as n — oo for all
complex z. The convergence is uniform on bounded sets. By Problem 116,

(da(bs 2), By(b; 2)) = (Au(a, 2); By(a, 2)) M y(a, b, 2)

for some space J¢(M,(a, b)) such that M, (a, b,0) =1 and B!(a, b,0) —
C(a, b, 0) = k, and for some entire functions 4,(a, z) and B, (a, z), which
are real for real z, such that

[B.(a, 2)A,(a, 2) — A,(a, 2)B,(a, 2)]](z — 2) =0

for all complex z. Because of Problem 115 there exists an increasing sequence
5(1), 5(2), $(3), - - -, of positive integers such that

M(a, b, z) = lim My, (a, b, z)

fo—= 00
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exists in the sense of formal power series. (See the analogous SSPS Lemma 6
and Theorem 22.) By the estimate of Problem 115, the limit series converges
for all complex z and convergence of the last limit takes place also in the
sense of function values, uniformly for z in any bounded set. Since the
entries of M, (a, b, z) are real for real z for every n, the entries of M(a, b, z)
are real for real z. Since

Ms(n)(a, 5, Z)IMs(n)(aJ b, Z_) =1
and
[Min(a, b, Z)IMs(n)(aa b, z) — I]KZ ~2) =20
for every n,
M(a, b, 2)IM (a, b, 2) = I
and
[M(a, b, 2)IM(a, b, z) — I][(z — 2) =0

for all complex z. These are the conditions for the existence of a space
Je(M(a, b)). Since
B;(n)(a’ b, 0) - C.;(n)(a> b, 0) =h
for every n,
B'(a, b,0) — C'(a, 5,0) = h.

Since we have
(As(n)(a’ Z)’ Bs(n)(“: Z)) = (As(n)(b: z)’ Bs(n)(b: Z))IMs(n)(aa b; Z—)i
for every n, where

A(b, z) = lim Ay (b, 2),  B(b, z) = lim By, 2),
(n) (n)

N—> 0 N—>

M(a b, z) = lim M,((a, b, 2),
n— 0

the limits

A(a, z) = lim Ay ,y(a, z) and B(a, z) = lim By, (a, 2)

H—> 0 Mn—>co

exist for all complex z. Convergence is uniform on bounded sets. The limit
functions A(a, z) and B(a, z) are entire functions which are real for real z.
Since

[Baw (@ 2) et (@ 2) — sy (@, 2)Byiay(a, 2)]](z — 2) =0
for every n,
[B(a, 2)A(a, z) — A(a, 2)B(a, 2)]/(z — 2) =0
for all complex z.

PROBLEM [17. InTheorem 36 show that a space Je(£(a)) exists, E(a, z) =
A(a, z) — iB(a, z), if A(a, z) and B(a, z) are linearly independent.
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PROBLEM |18. If A(q, z) and B(a, z) are linearly dependent in Theorem
36, show that E(a, z) = A(a, z) — iB(a, z) has only real zeros and that
E(b, z)|E(a, z) is an entire function., Show that

[F(z)E(a, w) — E(a, 2)F(w)]/(z — w)
belongs to JE(E(8)) whenever F(z) belongs to JC(E()).

PROBLEM |19. Let J(E(b)), (E(c)), and JE(M(b, c)) be spaces such that
(A(e, 2), B(c, z)) = (A(b, z), B(b, z)) M(, ¢, z).

Let A(a, z) and B(a, z) be linearly dependent entire furctions, which are
real for real z, such that

(A(6, 2), B(c, 2)) = (A(a, 2), B(a, 2))M(a, ¢, z)
for some space J(M(a, ¢)). Show that
(A(b, ), B(b, z)) = (A{a, z), B(a, z))M(a, b, 2),
M(a, ¢, z) = M(a, b, z) M(b, ¢, z)
for some space JC(M(a, b)).

PROBLEM 120. Let J&(E(c)), (M(a, c)), and K(M(b, c)) be spaces such
that
(A(c, 2), B(c, z)) = (4(a, 2), B(a, z))M(a, ¢, 2),
B

(A(e, z), Ble, 2)) == (A(b, z), B(b, z))M(b, ¢, z)
for linearly dependent entire functions A(a, z) and B(a, z) and for linearly
dependent entire functions A(b, z) and B(b, z) which are real for real z.
Show that E(a, z) = A{a, z) — iB(a, z) and E(b, z) = A(b, z) — iB(b, z)
are linearly dependent. Show that either
(A(b, 2), B(b, z)) = (A(a, 2), B(a, z))M(a, b, z),
Ma, ¢, z) = M(a, b, ) M(b, ¢, z)
for some space J&(M(a, b)) or
(A(a, z), B(a, 2)) = (A(b, z), B(b, z))M(b, a, z),
M(b, ¢, z) = M(b, a, z)M(a, ¢, 2)
for some space JC(M(b, a)).

PROBLEM 121. Let J(E(c)), J&(M(a,c)), and JC(M(b,c)) be spaces such
that
(A(e, 2), B(c, z)) = (A(a, 2}, B(a, z))M(a, ¢, z),

(
(A(e, 2), B(c, z)) = (4(b, 2), B(b, z)) M(b, ¢, z)
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for entire functions A(a, z), B(a, z), 4(b, z), and B(b, z), which are real for
. real z, such that

[B(a, z)A(a, z) — A(a, 2)B(a, 2)]/(z — Z) =0,
[B(b, z)A(b, z) — A(b, 2)B(b, 2)]/(z — 2) =0
for all complex z. If M(a, ¢, 0) = M(b,¢,0) = 1, and if
B'(a,¢,0) — ('(a,¢,0) = B'(b,¢,0) — C'(4,¢,0),

show that
(4(b, 2), B(b, 2)) = (A(a, 2), B(a, 2))M(a, b, 2),

Ma, ¢, z) = M(a, b, z) M(b, ¢, 2)
for some space J&(M(a, b)). If
B'(a,¢,0) — C'{(a, ¢, 0) = B'(b,¢,0) — C'(b, c, 0),
show that M(a, b, 2z) =1, A(a, z) = A(b, z), Bla, z) = B(b, z), and
Mla, ¢, z) = M(b, ¢, 2).

PROBLEM [22. Show that A(a, z) = lim 4,,(a, 2), B(a, z) = lim B, (a, z),
and M(a, b, z) = lim M, (a, b, z) as n — o in the proof of Theorem 36.

PROBLEM 123. IfJe(M) is a given space and if M(0) = 1, show that there
exists a sequence {J€(M )} of finite dimensional spaces such that M ,(0) = 1
and B (0) — C (0) = B'(0) — C’(0) for every n, and such that M(z) =
lim M ,(z) for all complex z.

PROBLEM 124. If J0(M) is a given space and if M(0) = 1, show that

M0V = (“ ’3) >0
By
and that
M(z) =2 M™(0)z"/n!
=0
where o(M‘™(0)) < (« + y)"for everyn = 1,2, 3, -+, Show that

I+ o[M(z) — 1] <exp [(« + ) |2]]
for all complex z.

PROBLEM I25. IfJC(M(b)) is a given space, if M(6,0) = 1, and if 2 is a
given number, 0 < h < B'(5,0) — C’(b, 0), show that there exist unique
spaces JC(M(a)) and (M(a, b)) such that

M(b, z) = M(a, z)M(a, b, 2),
M(a, b,0) = 1, and h = B’(a, 0) — C'(a, 0).
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37. INTEGRAL EQUATION FOR M(2)

The factors of M(z) satisfy an integral equation.

THEOREM 37. Let ¢ be a given positive number and let JC(M(c)) be a
given space such that M(¢, 0) = 1. For each number ¢, 0 <a <¢, let

Mle, z) = M(a, z)M(a, ¢, z)

be the unique factorization such that J(M(a)) and JH(M(a,c)) exist,
M(a, 0) = 1, and )

B’(a, 0) — C'(a, 0) = [B'(¢, 0) — C'{¢, 0)]afe.

Then m(a) = M’(a,0)I is a continuous, nondecreasing function of a,
0 <a <c¢, and

Mia, 2)I — I = z [ M, 2)dm(2)
for0 <a <v.

We show in the proof that the entries of M(¢, z) are continuous functions
of t for each fixed z and that the entries of m(t) are functions of bounded
variation. The matrix integral equation is equivalent to four scalar Stieltjes
integral equations:

Ba, 2) = z [ A(t, 2)du(t) + 2 [ B2, 2)dp (o),

L — (g, 2) =z [* A(t, 2)dB(1) + [2 B, 2y (@),
D(e,2) — 1=z [ Clt, 2)da(t) + J¢ D, 2)dp ),
~Cla, 2) = 2 [" C(t, 2)dp() + zfo D(t, 2)dy(1).

Proof of Theorem 37. TFor notational convenience we restrict the proof to the
case in which a(c¢) + y(¢) = ¢, but the general case can be obtained by an
obvious change of variable. It follows from Problem 113 that when a <
there is a space J&(M(a, b)) such that M(b, z) = M(a, z)M(a, b, z). This
condition implies that M(a, b, 0) = 1 and that m(b) = m(a) + m(a, b) where
the matrix m(a, b) is nonnegative. So m(f) is a nondecreasing function of ¢.
Since «(¢) and y(¢) are nondecreasing functions of t and since a(f) + y(t) = ¢,
they are continuous. Since

[8(6) — B(a)]* < [«(b) — «(@)][y(b) —y(9)] < (b — &)*
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when a < b, B(t) is a continuous function of ¢ of total variation at most ¢ in
[0, ¢]. Since
o[M(a, b, 2) — 1] < exp [(b — o) 2] — 1

and o[M(a, z) — 1] < exp [a |z]] — 1, we obtain
o[M(b, z) — M(a, z)] < exp (b|z]) — exp (a|z])

when a < b, which implies that the entries of M(¢, z) are continuous
functions of ¢ for each fixed z. These conditions are sufficient for the existence

of the Stieltjes integral f: M(t, z)dm(t) for all complex z where 0 <a <e¢.

It remains to show that the integral is equal to M(a, z)I — I. We do this by
showing that

M(a, )T — I — z [* M(t, z)dm()
vanishes identically. When a < b,
M(b, 2)I — Mia, )1 — z | M, z) dmf1)
= Mz, 2)[M(a, b, 2] — I — 2 [* M{(a, , 2)dm({)]
where
M(a, b, 2)I — I — z [* M(a 1, 2)dm(2)
= M(a, b, )1 — I — z(m(b) — m(a)) — 2 [* [M(a, 1, z) — L}dm(s).
By Problem 124,
o[ M(a, b, 2)I — I — 2(m(b) — m(a))]
<exp[(b—a)lzl] — 1 — (b —a) ||
< (b —a)?|z]Pexp [(b — a) |2]],
o 2 [" 1, 2) — (1) ]
< (b —a) |zl exp [(b — a) 2] — (b — a) |2].
So we obtain

o‘!:M(b, z)I — M{a, 2)I — z f: M(t, z)dm(t):l < 2(b — a)?|z]2exp [c]2]].

If0 = ¢, <ty <<+ <t = ais a partition of the interval [0, 4] of mesh at
most §, then

of Mty )1 — M(t,_y, )T — 2 [* M, z)dm(t):]

te_1

< 28(f — tea) |21% exp [¢ |2]]
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for every k. By the triangle inequality
o M(a, )1~ 1 — = Jo M, 2)dn(t) | < 25a|z2|? exp [¢ |2]].

By the arbitrariness of J,

M(a, )1 — I — 2 [* M, 2)dmft)

vanishes identically.

PROBLEM 126. If JE(E(0)) is a given space and if ¢t < 0, let JC(M(s, 0))
be the unique space such that M(t, 0,0) = 1,

«() /3(15)>

sy i) ="

M'(z,0,0)] = (
where «(?) + y(t) =t, and
(4(0, z), B(0, z)) = (A(t, z), B(1, z))M(t, 0, z)
for entire functions A(¢, z) and B(i, z), which are real for real z, such that
[B(t, 2)A(t, z) — A(t, 2)B(t, 2)]/(z — 2) =0

for all complex z. Show that m(¢) is a nondecreasing function of ¢ and that
its entries are continuous, real valued functions of ¢. Show that A(#, w) and
B(t, w) are continuous functions of ¢ for every w and that

(A(b, ), B(b, )] — (A(a, w),Blaw))T = w ["(A(t, w), B(t, w))dm(t)

whenever —oo < a < & < 0. Show that A(a, z) and B(a, z) are lincarly

dependent if ¢ < b and if A(, z) and B(b, z) are linearly dependent. If

there exists a value of ¢ such that 4(t, z) and B(t, z) are linearly dependent,

show that there exists a largest value of ¢ with this property, say ¢ = s_.

Otherwise define s_ = —oo. Show that a space JC(E(t)) exists when
>S5

38. SOLUTION OF THE INTEGRAL
EQUATION FOR M(z)

The integral equation of Theorem 37 has a unique solution for any given
choice of m(t), and a space JC(M) exists.

«(t) A1)
B ¥

function of ¢ in a finite interval [a, ¢]. Then for each complex number w,

THEOREM 38. Let m(f) == ( ) be a continuous, nondecreasing
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there exists a unique continuous, matrix valued function

Afa, t, w) Bla,t, w))

M(a, t, w) = (C(d, tL,w) Dia,t, w)

such that
Mia, b, w)I — I =w [* M(a, t, w)dm()

fora < b < ¢ For each fixed b, the entries of M(a, b, z) are entire functions
which are real for real z, and a space J(M(a, b)) exists. Also

M(a, ¢, z) = M(a, b, z)M(b, ¢, z)

for some space JE(M(b, ¢)).

Proofof Theorem 38. Define a sequence (M, (a, t)) of functionsof t,a <t <,
inductively by My(a, t) = | and

M,a(a, 0)1 = [ M (a, t)dm()
a
forn =0,1,2,---. The integrals exist because the integrand is always a

continuous, matrix valued function of ¢ and because m(t) is nondecreasing.
Since

[ Moa(a,8)] < |7 o[M,(a, 01da(t) + y(1)],
we find inductively that
o[ M,(a, B)] < [a(b) + y(5) — «(a) — p(@)]"/n.

It follows that the series
M(a, b, w) = > M, (a, b)w"
0

converges for all complex w. The sum M(a, b, w) is a continuous function
of b for every w. The uniform convergence of the series allows us to integrate
term-by-term for any fixed w to obtain

w f” Mg, 1, w)dn(t) = 3 fb M, (a, £)dm(t)w™+t

= 3 M,1(a, b T+
1}

= M(a, b, w)I — I.
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So Mla, b, w) is the desired solution of the integral equation. To prove
uniqueness, consider a possibly different solution A, (e, b, w). Then

M(a, b, 2)INT,(a, b, w) — I

=z j” M(a, t, 2)dm(t) — @ fb dm(t) M, (a, t, w)
+ 2 [ Ma, t, Dm0 [ dm(s) M (a, 5, w)

=z [* M(a, 1, 2)dm(t) — [* am(e) iy (a, 1, )
+ 2 [ Ma, t, 2)dm(t) Fo f dm(s) ¥y (a, s, w)
+ 2 [ [* Ma, 1, 2)dm()1 dm(s) s (a, 5, w)

=z " M(a, t, 2)dm(t) — @ [ am(e) ,(a, 1, w)
+ 2 [ M(a, t, 2)dm(§)[My(a, t, w) — 1]
— @ [" [M(a 1, 2) — 11dm(t) (e, , w)

= (z — @) fb M(a, t, 2)dm(t) My(a, t, w).

When z = @, we obtain

M(a, b, ®)IM,(a, b, w) = L
The equation

M(a, b, ®)IM(a, b, w) = I
holds for the same reason. It implies that

M(a, b, w)IM(a, b, ©) = I.

It follows that M (a, b, w) = M(a, b, w), which completes the proof of
uniqueness.

The entries of M(a, b, z) are represented by power series with real
coefficients and so are entire functions which are real for real z. The identity

M(a, b, 2)IM (a, b, 2) = 1
implies that M(a, b, z) has determinant 1. We have seen that
[Mla, b, z2)IM(a, b, w) — I1/(z — &) = fb M(a, t, z)dm(t) M{a, ¢, w)
a

for all complex z and w. Since the Stieltjes integral on the right is a limit of
nonnegative matrix sums when z = w, it is a nonnegative matrix in this
case. The conditions for the existence of a space J&(M(a, b)) have now been
verified.
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Since M(a, b, z) has determinant 1, we can define a matrix M(b, {, z)
of entire functions by

M(b, t, z) = M(a, b, 2)7*M(a, t, z)
when b <t < ¢ Itis easily verified that the integral equation
M(b, 1, 2)T — I = z [ M(b, s, 2)dm(s)

holds. As we have seen, these conditions imply the existence of a space
Je(M(b, t)) when b < t < ¢. The theorem follows.

«(t) B
B ()
matrix valued function defined in a finite interval [a, b]. Show that there
exists a real valued function 7(¢) in [a, 5] with the following property: If A(f)
is a real valued function of ¢ in [a, 0], then the matrix valued function

( «(?) pl) + ih(t))
B(t) — ih(t) 140

is nondecreasing if, and only if, the numerical functions =(¢) - A(¢) and
7(t) — k(#) are nondecreasing. Show that 7(¢) is a continuous, nondecreasing
function of ¢ which is absolutely continuous if a(¢) 4+ (¢) is an absolutely
continuous function of . Show that 7'(¢) exists at all points where «’(f),
B'(t), and (1) exist, and that

()P = (O)y(1) — F()*

PROBLEM 127. Let m(t) = ( ) be a continuous, nondecreasing,

at such points. The function 7(¢) is called the largest nondecreasing function
such that

( a(?) p) + Z'T(t))
plt) —ir(1) 7(t)

is nondecreasing. It is unique within an added constant.

PROBLEM 128. If J¢(M) is a given space, show that the functions 4(z) —
iB(z) and D(z) + iC(z) are of bounded type in the upper half-plane and
have equal mean types in the half-plane. Show that each of the functions
A(z), B(z), C(z), D(z) is of bounded type in the upper half-plane and that it
has the same mean type in the half-plane as A(z) — iB(z) and D(z) 4 iC(z)
unless it vanishes identically. The common mean type of these functions is
taken as the definition of the mean type of M(z).
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PROBLEM [29. If JC(M) is a given space, show that the mean type of
M(z) is nonnegative and that it is zero if 4(z) and B(z) are linearly de-
pendent.

39. MEAN TYPE OF M(z)

We now determine mean type from a knowledge of m(t).

() B
OO

matrix valued function of ¢ in a finite interval [a, ¢]. Let (M(q, £, z)) be the
corresponding family of matrix valued functions such that

THEOREM 39. Let m(f) = ( ) be a continuous, nondecreasing,

M(a, b, )T — I = z [ M(a, 1, 2)dm(1)
for a < b < ¢. Let 7(t) be the largest nondecreasing function of ¢ such that

( 0 MQ+Mﬂ
By —ir)) ()

is nondecreasing. Then the mean type of M(a, b, z) is 7(b) — 7(a).

LEMMA 9. If J2(M) is a given space, if 7 is the mean type of M(z), and
if —7+ <k < 7, then there exists a space J&g(M) corresponding to S(z) =

eWHM@:MMHM@h%Z%Jm#Sw—&
¥

Proof of Lemma 9. If A(z) and B(z) are linearly dependent, 7 =0 by
Problem 129 and ay — 2 > 0 because M'(0)] = 0. If 4(z) and B{(z) are
linearly independent and if E(z) = 4(z) — ¢B(z), a space JC(E) exists by
Problem 14. Since we assume that —r <k < 7, §(z)/E(z) and §*(2)[E(z)
are of bounded type and of nonpositive mean type in the upper half-plane.
By the proof of Theorem 27, there exists a number p > 0 such that

D(2) + iC(2)

(8|2t
“A(z) —iB(z)

- D+ |E

_ﬁy“l‘ﬂf_oo (t— x)? + 52

for y > 0. Since S(z) has absolute value 1 on the real axis,
fj: (1 + )1 [S()/E(8)|2dt < o0.

By Theorem 25, [F(2)S(w) — S(z)F(w)]/(z — w) belongs to J&(E) whenever
F(z) belongs to JO(E). By Theorem 27, there exist entire functions Cy(z) and
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D,(z), which are real for real z, such that

A(2)Dy(z) — B(2)Cy(2) = 5(2)5*(2),
Re [4(2)Dy(2) — B(2)Gi(2)] = §1S(2)* + §IS*(2)I7

for all complex z. By the proof of Theorem 27,

Re Dy(z) + zC’l 2 J.m )| ~2dt

A(z) — iB(z t—x)2~|~y
for y > 0. It follows that

D(z) +iC(z)  Dal2) +iGi(2)
Re =B P TR —5Be

for y > 0. Since we can add an imaginary multiple of E(z) to D,(z) +
iCy(z) without changing the defining property of the functions, we can
choose them so that

D) +ila) _ | Dile) +iG()
A =B T e — B,
It follows that D(z) = Dy(z) — pzB(z), C(z) = Cy(z) — pzA(z),
4(2)D(z) — B(2)C(z) = 8(z)$*(z),
Re [4(2)D(z) — B(z)C(2)] = Re [4(2)Dy(2) — B(z)Cy(2)]
=3 [S(2)* + §IS*(2)

for all complex z. This verifies the conditions for the existence of a space
Jg(M). Since
[M(w)IM(w) — S(w)IS(w)]/(w — @) =0

for all complex w, we obtain

MO — S0 =0
when w = 0. It follows that A2 < ay — p2. Since % is an arbitrary number
in the interval [—7, 7], 7% < ay — (2

Proof of Theorem 39. Let 7(s,t) be the mean type of M(s, ¢, z) when
a <s <t <c Since Ma,t, z) = M(a,s, z)M(s, ¢, z) when a <s < ¢, it
is clear that

7(a, t) < 7(a,s) + 7(s, t).
By Lemma 9,

[T(a> t) — 7(a, 5)]* < 7(s, t)z
< [a(t) — a()[y () — ()] — [B(t) — B()]?
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It follows that
( «(?) p(8) + ir(a, t))
p(8) — ir(a, 1) (1)

is a nondecreasing function of ¢, a < ¢ <¢. By the definition of 7{(¢) we
-obtain the inequality
7(a,t) — 7(a, s) < 7(t) — 7(s)

whenever a <s <t <o
To obtain the reverse inequality, consider any function (), a <t <,
such that
7(s) — 7(t) < h(t) — A(s) < 7(t) — 7(5)

whenever ¢ < s < ¢ < ¢. Then A(¢) is a continuous function of ¢ which is of
bounded variation in [a, ¢|. Integrating by parts in the integral equation

M(a, b, 2)] — [ =z fb M(a, t, z)dm(t),
we obtain the identity

z J:Z €MD) (a, t, 2)dm(t) + iz J: e M(a, t, 2)1 dh(2)
= ¢ M(a, b, 2)I — ¢M2],

By the proof of Theorem 38, this implies the more general identity
(z — w) fb MM (a, t, Z)d[m(t) + iTh(2) ] DP [ (a, t, w)
a
== MO0 (g, b, 2) POV [ (a, b, w) — KO [@OT,
When z = @ we obtain the inequality

[M(a} b) Z)IM(‘Z, b, Z) - S(a, b, Z)ILS_V(Q, b, z)]/(z _ Z-) > 0
with
S(a, b, z) = M OIzg-ina)z,

since the integral then represents a nonnegative matrix. (It is defined as a
limit of Stieltjes sums, each of which is a nonnegative matrix.) A space
Ko, (M(a, b)) therefore exists. This implies that the mean type 2(b) — £(a)
of $*(a, b, z} in the upper half-plane does not exceed the mean type 7(q, 5)
of M(a, b, z). By the arbitrariness of A(t), v(a, b) = 7(b) — 7(a). Equality
holds since the reverse inequality was obtained earlier in the proof.

PROBLEM [30. Let u(x) be a nondecreasing function of real x which has
r + 1 points of increase, r = 0, 1,2, +--. Show that the polynomials of
degree at most r are a Hilbert space which satisfies the axioms (H1), (H2),
and (H3) in the metric of L*(u). Show that the space is a space J0(E) for
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some polynomial E(z) of degree r + 1 which has no real zeros. Show that
there exist entire functions C(z) and D(z), which are real for real z, such that
A(2)D(z) — B(2)((2) = 1,
Re [4(2)D(z) — B(2)C(z)] =1

for all complex z, [D(z) + iC(2)]/E(z) has no real singularities and

lim Re 52D (i) + iC()]/E@) = 0.
y—>+o0
Show that the corresponding space J¢(M) has dimension r 4- 1 and that
D(z) 4 iC(z) is a polynomial of degree r 4- 1. Show that there exists a
number W of absolute value 1 such that

2f+oo du() g D(2) +ib(2)] + [D() —iCR)IW
w1 — x) 4 [A(z) — iB(2)] — [A(2) + B()]W

for y > 0.

PROBLEM I31. Show that a space £(¢) is finite dimensional if, and only if|
@(z) can be written as a ratio of polynomials.

PROBLEM 132. If £(¢) is a finite dimensional space and if ¢ > 0, show
that there exists a space J8(M(a)) and a function W(a, z), analytic and
bounded by 1 for y > 0 such that

[D(a, z) -+ iC(a, z)] + [D(a, z) — iC(a, z)]W(a, z)
[A(a, z) — iB(a, 2)] — [A(a, z) 4 iB(a, )] W(a, z)

p(z) =
for y > 0, M(a,0) = 1, and B'(a, 0) — C’'(a, 0) = a.

PROBLEM [33. Iff(p) is a given space, show that there exists a sequence
{£(p,)} of finite dimensional spaces such that ¢(z) = lim ¢,(z) when z is
not real. Hint: See SSPS Theorem 21.

PROBLEM 134. If £(¢) is a given space and if a > 0, show that there
exists a space J&(M(a)) and a function W(a, z), analytic and bounded by 1
for y > 0, such that

[D(a, z) + iC(a, z)] -+ [D(a, 2} — iC(a, z)]W(a, z)
[d(a, z) — iB(a, z)] — [A(a, 2) + iB(a, z)]W(a, z)

p(z) =

for y > 0, M(a, 0) = 1, and B'(a, 0) — C'(4,0) = a.
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PROBLEM [35. Let J¢(E(a)) be a given space and let W(a, z) be a function
which is analytic and bounded by 1 for y > 0. Assume that W(a, z) is not
identically 1 and that

1+ W(a,z) [D(a, b, z) +iC(a, b, 2)] + [D(a, b, z) — iC(a, b, 2)]W (b, z)
I — W(a,z) [Ala,b, z) —1B(a, b, z)] — [A(a, b, z) + iB(a, b, 2)|W(b, z2)

where JC(M(a, b)) exists and W(b, z) is analytic and bounded by 1 for
2> 0. If Ca, z) = —B(a, z), D(a, z) = 4(a, z), and

M(b, z) = M(a, z)M(a, b, z),
show that
E(a, z) + E*(a, z) W(a, z)
E(a, z) — E*(a, z)W(a, z)
Db, 2) + iC(b, 2)] + [D(b, z) — iC(b, 2)]W(b, z)
 [A(b, 2) — iB(b, z)] — [A(b, z) + iB(b, 2)]W(b, z)

for y > 0.

PROBLEM 136. Lct ¢(z) be a function which is analytic and has a non-
negative real part in the upper half-plane. Assume that

_ [D(a, b, 2) +iC(a, b, 2)] + [D(a, b, z) — iC(a, b, 2)]W(b, 2)

?(2) = [A(a, b, 2) — iB(a, b, z)] — [A(a, b, z) -+ iB(a, b, z)]W(b, z)
and that :
o(z) = [D(a, ¢, z) + iC(a, ¢, 2)] 4 [D(a, ¢, z) — iC(a, ¢, 2)]W (e, 2)

o [A(a, ¢, z) — iB(a, ¢, z)] — [4(a, ¢, z) + iB(a, ¢, 2)]W(c, z)

for y > 0 where J(M(a, b)) and J(M(a, c)) exist and where W(b, z) and
W(c, z) are analytic and bounded by I in the upper half-plane. Show that
either

M(a, ¢, z) = M(a, b, z)M(b, ¢, z)

for some space JE(M(b, ¢)) or that

M(a, b, z) = M(a, ¢, z)M(c, b, z)
for some space J(M(c, b)).

PROBLEM I37. Let u(x) be a nondecreasing function of real x, which is
not a constant, such that fjw (1 + 2)~*du(t) < . Show that there

exists a space JE(E) contained isometrically in L2(u) such that E(z) is of
bounded type in the upper half-plane and has no real zeros.
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PROBLEM 138. Let JC(E(0)) be a given space such that E(0, z) has no
real zeros and let u(x) be a nondecreasing function of real x such that
J6(E(0)) is contained isometrically in L2(x). For each number b = 0 show
that there exists a unique space JS(E(b)) such that

(A(b, 2), B(b, 2)) = (4(0, z), B(0, 2))M(0, b, z)
for a space JE(M(0, b)) with AM(0, b,0) =1
, (=) B0 _
MO, 5 00 = (ﬁ(b) y<b>) =m0

and «(b) + v(b) = b, and such that there exists a function W(b, z), analytic
and bounded by 1 for y > 0, and a number p(b ) > 0 such that

E(b2) + E*b, Wb, 2) 2 [ Lt 0)[2du()
R E(b, z) — E*(b, z)W(b, ) pOw+7 f — %)% 4 y?

for y > 0. Show that m(t) is a nondecreasing function of ¢ and that its
entries are real valued, continuous functions of ¢ Show that E(f, w) is a
continuous function of ¢ > 0 for every w and that

(A(b, w), B{b, w))I — (A{a, w), B(a, w))] = w Lb (A(t, w), B(t, w))dm(t)
for 0 <a<b << 0.

PROBLEM 139. Let {J6(E(¢))} be a family of spaces and let
oW
0= o)

be a nondecreasing, matrix valued function of ¢, both defined in an interval
s_ <t < s,. Assume that the entries of m(¢) are continuous, real valued
functions of ¢, that E(t, w) is a continuous function of ¢ for every w, and that

(A(b, w), B(b, w))I — (A(a, w), B(a, w))] = w J; (A(t, w), B(t, w))dm(t)
whenever s_ < a << b < s,. Show that
[B(b, 2)A(b, w) — A(b, 2)B(b, w)] — [Bla, 2)A(a, w) — A(a, 2)B(a, w)]
= (2 — ) [ (At 2), Bt, 2)dm(t) (A(t, w), B(t, )~

for all complex z and w. Hint: See the proof of Theorem 38 for an analogous
matrix identity.
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PROBLEM 140. Let {JC(E, (¢))} and {J&(E_(¢))} be families of spaces and

i i

et m(t) — (a( ) B

B v

both defined in an interval s_ < ¢ < s,. Assume that the entries of m(t) are

continuous, real valued functions of ¢, that £, (¢, w) and E_(t, w) are con-

tinuous functions of ¢ for every w, and that
(4..(6, w), B (b, w))I — (A (e, w), B (a, w))]
b
—w [" (4,1, w), Byt w))dm(s),

(A—(b> w)> B—(b7 w))[ - <A~(a’ w)) B—(‘l> w))l
—w L” (A_(t, ), B_(t, w))dm(2)

) be a nondecreasing, matrix valued function of i,

whenever s. < a < b < $4. Show that
[B.(b, z)A_(b, w) — A, (b, 2)B_(b, w)] .
— [B(a, 2)A_(a, w) — A, (a, 2)B_(a, w)]
— (2 — @) fa” (A, (t, 2), B, (t, 2))dm(t) (A_(t, w), B_(t, w))~

for all complex z and w. If there is some choice of @ such that E, (q, z) =
E_(a, z) for all complex z, show that E_ (¢, z) = E_(t, z) forallt,s_ < t < Sy,
and for all complex z. Hint: See the proof of Theorem 38 for analogous
matrix results.

PROBLEM l4l. In Problem 139 let A4(a, t, w) be the unique, continuous,
matrix valued function of £, s_ << ¢ < ¢ < s, such that

M(a, b, w)l =1 = w [* M(a, 1, w)dm(s)
for @ < b < s,. By Theorem 38 the entries of M(a, b, z) are entire functions
of z for any fixed a and b, and a space J&(M(a, b)) exists. Show that
(A(b, 2), B(b, 2)) = (A(a, z), B(a, z))M(a, b, z)
whenever s < a < b <s,. Hint: Use the results of Problem 140.

PROBLEM 142. In Problem 139 let 4(¢) be a real valued function of ¢ such
that m(t) 4 ilh(t) is nondecreasing, s_ < ¢ < s,. Show that A(t) is a con=
tinuous function of ¢ which has finite total variation in any interval (a, 5),
s <<a <b <s,. Show that

exp [ih(b)2][B(b, 2)A(b, w) — A(b, 2)B(b, w)] exp [—h(6)w]
— exp [ih(a)2][B(a, 2)A(a, w) — A(a, z)B—(a, w)] exp [ —ih(a)@]
= (z — @) L” exp [3h() 2] (A1, 2), B(t, 2))
X d[m(t) + tIh()](A(t, w), B{t, w))~ exp [—ih(t)&]

for all complex z and w when s_ < a < b < Sy
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PROBLEM 143. In Problem 139 let 7(¢) be the largest nondecreasing
function of ¢ such that

m(t) — ( at)  BU)+ iT(z))

ple) —ir (1) (1)

is nondecreasing, s_ < f < s,. Show that the mean type of E(b, z)/E(a, z)
in the upper half-plane is 7(b} — 7(a) whenever s_ < a < b <s,. Hini:
See the proof of Theorem 39.

PROBLEM 144, Let JC(£(a)), JC(E(D)), and J(M(a, b)) be spaces such that
(4(b, z), B(b, 2)) = (A(a, z), B(a, z))M(a, b, z).

Show that the mean type of E(b, z)/E(a, z) in the upper half-plane is equal
to the mean type of M(a, b, z).

PROBLEM 145. Let JC(M(a, b)), JE(M(b,¢)), and JC(M(a,c)) be spaces
such that M(a, ¢, z} = M(a, b, 2)M(b, ¢, z). Show that the mean type of
M(a, ¢, z) is the sum of the mean types of M(a, b, z) and M(b, ¢, z).

PROBLEM 146. Let JC(E(a)), JE(E£(D)), and J&(M(a, b)) be spaces such that
(4(b, 2), B(b, 2)) = (A(a, 2), B(a, 2))M(a, b, 2)

and such that JC(E(a)) is contained isometrically in JC(E(8)). Let = be the
mean type of Z(b, z)/E(a, z) in the upper half-plane and let & be a given
number, —7 </ < 7. Let JG be the set of elements F(z) of J(E(b)) such
that ¢"*F(z) belongs to J(E(a)). Show that G is a closed subspace of
JE(E(8)) which satisfies the axioms (H1) and (H2) in the metric of J8(E(b)).
Show that the transformation F(z) — ¢*?F(z) takes J( isometrically onto
JC(E(a)). Show that F(z)[/(z — w) belongs to AL whenever F(z) belongs to
Mo and F(z)/(z — w) belongs to JE(E(b)).

PROBLEM 147. Let JC(Z($)) be a given space and let M be a closed
subspace of JC(E(d)) which contains a nonzero element. Assume that
F(z)[(z — w) belongs to AL whenever F(z) belongs to At and F(2)/(z — w)
belongs to JC(£(b)). Show that G satisfies the axioms (H1) and (H2) in the
metric of JC(£(5)). Show that there exists a unique element L(w, z) of Al
for every complex number w such that F(w) = (F(¢), L(w, t)) for every F(z)
in L. Show that L(w, z) satisfies the identity of Problem 51 for any nonreal
number o. Show that

L(w, z) = [By(2)A(w) — 44(2) B, (w)]/[m(z — )]
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for some entire functions 4,(z) and By(z) such that B, (2) 4¥(z) = 4,(2) Bf(z).
Show that [A¥(z) — iB¥(2)]/[4.(z) — iBy(2)] is an entire function which
has no zeros and which is of bounded type in the upper half-plane. Show
that there exists a real number /4 such that

A(a, z) = e™4,(z) and Bla, z) = ¢™*B,(z)

are entire functions which are real for real z. Show that a space JC(E(a))
exists, that it is contained isometrically in JS(E(4)), and that the trans-
formation F(z) — ¢™*F(z) takes J( isometrically onto JC(E(a)). Show that

(4(b, 2), B(b, 2)) = (4(a, 2), B(a, z))JM(a,‘b, z)

for some space JC(M(a, b)). If 7 is the mean type of E(b, z)[/E(a, z) in the
upper half-plane, show that —7+ <& < 7.

40. INTEGRAL EQUATION FOR E(z2)

A fundamental problem is to determine all spaces JC(E(a)) contained
isometrically in a given space JC(£(¢)), £(a, z) and E(¢, z) having no real
zeros, The solution is determined by a nondecreasing, matrix valued

() B
mm%ﬂ(t) y<t>)

whose entries are continuous, real valued functions of ¢ defined in a finite or
infinite interval (s_, s, ). A number b is said to be singular with respect to
m(?) if it belongs to an interval (g, ¢) such that m(a) £ m(b), m(b) % m(c),
and

function

[a(e) — a(@)][y(e) — v(@)] = [B(c) — B(a)]*
Otherwise a number 4 in the interval (s_,s,) is said to be regular with
respect to m(t).

THEOREM 40. Lect J(F) be a given space such that E(z) has no real
zeros and let u(x) be a nondecreasing function of real x such that JC(E) is
contained isometrically in L3(g). Then there exists a family {J€(E(t))} of
spaces, 5 << t < s, and a nondecreasing, matrix valued function

(e B
’”“)“(ﬂ(t) y<t>)’

whose entries are continuous, real valued functions defined in (s_, s, ), with
these properties:

(1) E(z) == E(c, z) for some number ¢ which is regular with respect to
m(t).
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(2) E(t, w) is a continuous function of ¢ for every complex number w,
and

(A(b, w), B(b, w))I — (A(a, w), Ba, w))] = w Lb (4@, w), B, w))dm(t)
whenever s_ << a < b <s,.

(3) fim [(t) + $(8)] = co.
1784

(4) E(a, 2z) has no real zeros and J(E(a)) is contained isometrically in
L%(u) when a is regular with respect to m(z).

(5) lim K(¢ w, w) = 0 for all complex w.

s

Proof of Theorem 40. Let E(0, z) = E(z). Define E(a, z) by Problem 126
in a finite or infinite interval (s_, 0). Define E(a, z) by Problem 138 for
a >0 so that s, = -+00. Conditions (1), (2), and (3) are satisfied by
construction and by the results of these problems. When s_ << ¢ << b <5,
let
A(a, t, w) Bla,t, w))

M(a, t, w) = (C(a, t,w) D(a,t,w)

be the unique, continuous, matrix valued function of ¢ > a such that
M(a, b, w)] — I =w f * M(a, t, w)dm(t)

whenever & > a. By Theorem 38 the entries of M(a, b, z) are entire functions
of z for any « and &, and a space J¢(M(a, b)) exists. By Problem 141,

(A(b, z), B(b, z)) = (A(a, z), B(a, z))M(a, b, 2)

for all complex z when s_ < a < b.

If b > s_ and if J(£(b)) is not contained isometrically in L2(y), then
multiplication by z is not densely defined in JE(E(5)), by Theorem 32. By
the theorem the domain of multiplication by z in JE(E(b)) is contained
isometrically in L3(yu). If J(E(b)) is a one-dimensional space and if s_ < a
< b, then JE(E(a)) is not contained isometrically in JC(E(b)) since then it
would fill (£ (b)), J(M(a, b)) would contain no nonzero element, and
M(a, b, z) would be a constant. This contradicts the construction of
Je(M(a, b)) such that B'(a,d,0) — C’'(a,b,0) = b — a > 0. Since the
inclusion of JC(E(b)) in L?(u) does not increase norms, the inclusion of
J(E(a)) in L2(p) is not isometric when s_ << a <C b. If J8(E())) is not a one-
dimensional space, then by Problems 87 and 126 there exists an index b_,
s_ < b_ < b, such that JC(E(b_)) is contained isometrically in JC(£(b)) and
is the closure of the domain of multiplication by z in J¢(E(b)). The space
JE(E(b_)) is also contained isometrically in L?(u), and the space Je(M(b_, b))
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is one-dimensional. If b_ << a < b, then JE(E(b_)) is contained in JC(E(a)),
JE(E(a)) is contained in JE(E£(b)), and these inclusions do not increase norms,
Since JE(L(h_)) is contained isometrically in JC(E(b)), it is contained iso-
metrically in J8(£(a)). An argument earlier in the proof will show that
JE(E(b_)) is not equal isometrically to JC(E(a)) and that JE(£(a)) is not
equal isometrically to JC(E(d)). It follows that JE(E(b_)) is contained
properly in J€(£(a)) and that JC(E(a)) fills JC(E()) when b_ << a < b,
Tt may be that there is no index ¢ > & such that JE(E(c)) is contained iso-
metrically in L2(g). If, on the other hand, such an index exists, then
JE(E(d)) is not contained isometrically in JE(E(c)). By Theorem 34 there

exists a nonzero constant (H) in J(M(b, ¢)) such that A(b, z)u + B(b, z)v
v

belongs to JC(E(b)). By Problems 102 and 138, there exists an index b,
b < b, < ¢, such that JE(E(b,)) is contained isometrically in JE(E(c)) and

Je(M(b, b,)) is a one-dimensional space spanned by (u) The form of
v
M(b, b, z) is given in Problem 101. If b < a < b, then it is easily verified
that (”) belongs to J6(M(a, b,)) and that
v

() = -2 ()

belongs to J(M(b, a)). Since
(A(b, 2), B(b, 2))M(b, a, z) (Z) = A(a, 2)u - B(a, 2)v

belongs to J€(E(a)), J(E(a)) is not contained isometrically in JC(E(b,))
when b < e < b,. It follows that J(F(a)) is not contained isometrically in
L?(u) when b < a < b,. Thus if J(£(b)) is not contained isometrically in
L*(p), we can always find an interval (a,¢), s. < a < b < ¢, such that
JC(E()) is not contained isometrically in L2(u) when a < t < ¢. For any
such interval (g, ¢), J(M(a, ¢)) is a one-dimensional space. By the form of
one-dimensional spaces given in Problem 101,

[ec(c) — «(@)][y(e) — y(a)] = [B(e) — B(a)]

and m(¢) — m(a) # 0. This completes the proof that b is a singular point
with respect to m(t) if JE(E(b)) is not contained isometrically in L2(u).

To obtain (5) consider first the case in which there exists a smallest
regular point b, s < b <s,. Then the space J(E(b)) is one-dimensional
and the desired limit is obtained by Problem 86. If, on the other hand, there
is no smallest regular point, consider the intersection G of the spaces
J(E(a)), a regular. Then A is a Hilbert space of entire functions which
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satisfies (H1), (H2), and (H3). If F(z) belongs to Al and has a zero w, then
F(2)](z — w) belongs to J(E(a)) for every regular number a and so belongs
to A, From this we can see that J contains no nonzero element. Otherwise
it would be equal to a space JC(E) such that E(z) has no real zeros, and by
Theorem 33 this contradicts the construction of Problem 126. If w is any
complex number and if @ < b are regular points with respect to m(t),
K(a, w, z) is the projection of K(b, w, z) in JC(E(a)). Since G contains no
nonzero element,

lim K(a, w, w) = lim [ K(a, w,t)||* = 0.
aNs_. aMs..

This obtains (5) in all cases, and the theorem follows.

PROBLEM [48. In Theorem 40 show that J¢(E(q)) is not contained
isometrically in L2(u) when the index « is singular with respect to m(t).

PROBLEM 149. In Theorem 40 let b be a regular point which is not the
left end point of an interval of singular points. Show that JC(E(b)) is the
intersection of the spaces JC(E(¢c)) such that ¢ is regular and & < ¢.

PROBLEM 150. In Theorem 40 let & be a regular point which is not the
right end point of an interval of singular points. Show that JE(E(8)) is the
closed span of the spaces J8(E(a)) such that a is regular and a < 4.

PROBLEM 151, Ifthe regular points have an upper bound in Theorem 40,
show that there is a largest regular point 4 and that JC(E(5)) fills L2(u).

PROBLEM 152. If E(0) = 1 in Theorem 40, show that £(¢,0) = 1 for all
indices ¢. Show that

a(b) — a(a) = B’(b,0) — B'(a, 0)

when a < b. Show that

a(s) = lim «(t)
NS
exists and is finite.

PROBLEM 153. In Theorem 40 let J(£;) be a given space which is
contained isometrically in L2(u) such that E;(z)/E(z) is of bounded type in

the upper half-plane and has no real zeros or singularities. Show that
Je(Ey) is equal isometrically to J¢(E(a)) for some regular number a.

PROBLEM 154, Assume that E(0) = 1 in Theorem 40. For cach index ¢,
let (i, x) be the phase function associated with E(¢, z) which has value 0
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at the origin. Show that ¢(¢, x) is a continuous function of ¢ for each fixed »
and that

§(b, )fx — pla, x)[x = [ cos? p(t, x)du (1)
+2 f” cos g (t, x) sin (4, %)dB()
+ [ sin (%) dp(0)

whens_ < a < b < s,. Show that (¢, x)/x is a nonnegative, nondecreasing
function of ¢ for each fixed x.

PROBLEM I55. LetJ(M(a)), (M(a, b)), and (M(b)) be spaces such that
M(b, z) = M(a, z)M(a, b, z) and such that A(a, z) and B(a, z) are linearly
independent. Show that when z is in the upper half-plane,
[D(e, z) 4 iCe, 2)] + [D(e, 2) — iC(e, 2)|w
—
[A(¢c, 2) — iB{c, 2)] — [Ale, z) + iB(c, z)]w

is a mapping of the unit disk |w| < 1 onto the disk D(c, z) of center
[D(c, 2)A(c, z) — C(c, 2)B(c, 2)]/[iA(c, 2)B(e, z) — iB(c, 2)A(c, 2)]

and radius

1/[iA(c, 2)B(e, z) — iB(c, 2)A(c, 2)]

for ¢ = a and ¢ = b, and show that D{a, z) contains D(, z).

PROBLEM 156. Let (£ (z)) be a sequence of entire functions of Pélya
class such that £,(0) =1 and Re E(0) = 0 for every n, and such that
limReE)(0) = 0and lim Re E7(0) = 0 asn > oo. Show thatlim E,(z) =1
uniformly on bounded sets as 7 — o0.

4l. SOLUTION OF THE INTEGRAL
EQUATION FOR E(z)

A fundamental problem is to determine the functions m(¢) which appear
in the solution of the structure problem for some space JC(E). The condition
for m(t) to correspond to a function E(z) of Pélya class is known.

«(t) ()
p) (@

function of ¢t > 0 whose entries are continuous, real valued functions of &
Assume that «f) > 0 for ¢ >0, that lim«(t) =0 as ¢\ 0, and that

f(ll a({t)dy(t) < co. Then there exists a unique family (E(i, z)) of entire

THEOREM 4l. Letm(i) = ( ) be a nondecreasing, matrix valued
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functions of Pélya class, ¢ > 0, such that E(f, w) is a continuous function of
t > 0 for every w,

(A4(b, w), B(b, w))I — (A(a, w), B(a, w))] = w Lb (A(t, w), B(t, w))dm(t)
whenever 0 < a < b < 00, and

lim E(t, w) exp [f(t)w] = 1.

N0

A space J(E(a)) exists for every a > 0, E(a, z) has no real zeros, and
E(a, 0) = 1.

Progf of Theorem41. Foreacha > 0let M(a, t, w) be the unique continuous,
matrix valued function of ¢ > a such that

M(a, b, w)] — [ = w fb M(a, t, w)dm(t)

whenever a < b. By Theorem 38 the entries of M(a, b, z) are entire functions
of z for each fixed a and b and a space J&(M(a, b)) exists. When a < b the
function E(a, b, z) = A(a, b, z) — iB(a, b, z) is of bounded type in the upper
half-plane, it has no zeros on or above the real axis, and |E(q, b, x — 3| <
|E(a, b, x + y)| for » > 0. By Problem 34 the function is of Pélya class. It
has value 1 at the origin,

B'(a, b,0) = a(b) — «(a), 4'(s,5,0) = pla) — (b),

and
A'(a,b,0)2 — A4"(a, 5,0) =2 [" [a(t) — a(a)ldy(0).
If we define
S(a, b, z) = E(a, b, z) exp [(b)z — B(a)2],
then S(a, b, 2) is of Pélya class, S(a, b, 0) = 1, Re §(4, 4, 0) = 0,

ReiS'(a, b, 0) = a(b) — afa),
and
Re §"(a, 5,0) = =2 [ [a(t) — a(a)ldy ().
By hypothesis
[ 12 — w@lay () < |7 ady(t) < oo.

By Problem 13, the estimate of Problem 10 holds for all functions of Pdlya
class. It follows that there exists a decreasing sequence (a,) of positive
numbers such that lim ¢, = 0 and

S(1, z) = lim S(a,, 1, 2)

N—> 0
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exists for all complex z. The limit S(1, z) is an entire function of Pélya
class which hasvalue 1 at the origin, $'(1, 0) = lim §(a,, 1, 0) and $"(1, 0) =
lim $”(a,, 1, 0) as n — c0. Since

Ma, ¢, z) = M(a, b, 2)M(b, ¢, z)
when a < b < ¢,
S(b, z) = lim S(a,, b, 2)

>0
exists for every & > 0. The limit $(b, z) is an entire function of Pélya class,
it has value 1 at the origin, Re $'(4, 0) = 0, Re i8'(5, 0) = «(b), and
Re §"(b, 0) = —2 f a(t)dy(1).

By Problem 156, lim S(b, z) = | uniformly on bounded sets as b 0.
Define
E(b, z) = S(b, z) exp [— () 2]

Then E(b, z) is of Pélya class, it has value | at the origin, and
(A(b, z), B(b, z)) = (A(a, 2), B(a, z))M(a, b, z)

when a << b. It follows that E(¢, w) is a continuous function of ¢ > 0 for
every w and that

(4(b, w), B(b, w)I — (A(a, w), B(a, w))] = w f: (A(t, w), B(t, w))dm(z)

whenever 0 << a < b. This condition implies that if w is a real zero of
E(t, z) for any fixed ¢, then it is a zero of E(f, z) for all ¢. Since

lim E(t, w) exp [f(Hw] =1

™0
by construction, E(t, z) has no real zeros for any ¢ > 0. Since B'(a, 0) =
a(a) > 0 when a > 0, B(a, z) does not vanish identically. Since A(q, 0) =1
and B(a, 0) = 0, A(a, z) and B(a, z) are linearly independent. By Problem
14, a space JC(£(a)) exists for every index a.

We prove uniqueness of the family (E(¢, z)) with these properties. Let

(E,(¢, z)) and (E_(t, z)) be families of entire functions of Pélya class, t > 0,
such that £, (¢, w) and E_(¢, w) are continuous functions of ¢ for every w and

(4, (b, w), B, (b, w))I — (A, (a, w), B, (a, w))]

—w f (t, w), B, (4, w))dm(s),
(A_(b, ), B_(b, w))I — (4_(a, w), B_(a, w))]

=w f” (A_(t, w), B_(t, w))dm(t)
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whenever 0 < a < b < 0. As in Problem 140,
[B..(b, 2)A_(b, w) — A, (b, 2)B_(6, w)]/(z — )
— [By(q, Z)I‘I_(a{w) — 4,(a, 2)B_(a, w)]/(z — )
m= Lb (AL(t, 2), BL(t, 2))dm(t) (A_(t, w), B_(t, w))~

for all complex z and w when 0 < a << b < 0. When z = @, we obtain
the identity

B, (b, 2)A_(b, z) — A, (b, 2)B_(b, 2) = B, (a, 2)A_(a, z) — A {(a, z)B_(a, z)
for all complex z. If

lim E (¢, z) exp [f(t)z] =1 and lim E_(¢, z) exp [f(#)z] =1,
™0 ™o

then

lin; [B, (a, 2)A_(a, z) — A (a, 2)B_(a, z)] =0

when z is on the imaginary axis. Since
B, (b, 2)A_(b, z) — A (b, z)B_(}, 2)

vanishes on the imaginary axis, it vanishes identically. Since £ (b, z) and
L_(b, z) can have no real zeros under these conditions,

E_(b,z) =55, 2)E (b, z)

for some entire function S(b, z) which is real for real z and which has no
zeros. Since

(A, (b, z), B, (b, z)) = (A, (a, 2), B.(a, z))M(a, b, z),
(A—(b’ Z)> B*(b7 Z)) = (A~(a7 Z)s B—(a9 z))M(a, b’ Z)
when ¢ < b, S(a, z) = S(b, z). Since

lim E_(t, 2)[E (3, z) =1,
o

S(t, z) = 1 identically and E_(t, z) = E_(¢, z) for all 1.

PROBLEM I57. Assume that E(z) is of Pélya class and that £(0) = 1 in
Theorem 40. Show that

2" La(t) — als)ldy(t) < 4'(0) — 47(0).

Hint: Obtain the inequality first for approximating finite dimensional spaces
and pass to a limit using Fatou’s theorem.
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() B
B ¥
valued function whose entries are continuous, real valued functions of ¢ in
some interval (s_, s, ). Assume that there exists a family (E(t, z)) of entire
functions, which have no real zeros, such that E(f, ) is a continuous function
of t for every w and

(A(b, w), B(b, w))I — (A(a, w), Bla, w))] = w fj (A(t, w), B(t, w))dm(t)

PROBLEM [58. Let m(¢) :( ) be a nondecreasing, matrix

whenever s_ << a < b <s,. If a space JC(E(a)) exists for every a, s < a <
sy, show that there exists a family (W(a, z)) of functions, analytic and
bounded by 1 for y > 0, such that )

1 + Wi(a, z) _ [Dfa, b, z) +iC(a, b, 2)] + [D(a, b, z) — iC(a, b, 2)]W(b, z)
1 — W(a, z) [Ala, b, z) — iB(a, b, z)] — [A(a, b, z) + iB(a, b, 2)]W(b, 2)

whens_ < a << b <s,. (If W(a, 2) is identically 1, the formula is meaning-
less as written but has an obvious interpretation on solving for W(a, z).)
Show that there exists a nondecreasing function u(x) of real x such that

E(a, z) + E*(a, 2)W(a, 2) 1o [E(a, 1)] 2d[u()
ReE(a, z) — E*(a, 2)W(a, z) j t~«x)2+_y

for y > 0 and all indices a, where p(a) is a nonnegative constant which
depends only on a.

PROBLEM [59. If £(z) is an entire function of Pélya class such that JC(E)
exists, show that K(w, z) is of Pélya class when w is in the upper half-plane.

PROBLEM 160. If E(z) is an entire function of Pélya class such that J¢(E)
exists, show that K(x + iy, x 4 1) is a nondecreasing function of y > 0 for
each fixed .

PROBLEM I6l. Iflim [«(f) 4+ ¢(¢)] = co asi 7 s, in Problem 158 and if
there exists an index ¢ such that the interval (¢, s,) contains only singular
points, show that

lim [B(t, 2)A(t, z) — A(t, 2)B(t, 2)]/(z — 2) =

t78y

for all nonreal z. Show that the functions W(a, z) are unique and are given
by
1 + W(a, 2) I D(a, b, z) + iC(a, b, 2)

1= W(a,2)  ons, Ala, b, 2) — iB(a, b, 2)

for y > 0, s_ << a <s,. Show that the union of the spaces J¢(E(a)), a
regular, is dense in L2(u).
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42. MEASURES DETERMINED BY INTEGRAL
EQUATIONS

The same conclusion holds also when there is no such interval of singular
points.

THEOREM 42. Iflim [«(¢) + 9(8)] = oo as ¢t 7 o in Theorem 41 and if
the set of regular points does not have an upper bound, then

lim (B 2)A(t, z) — A, 2)B(t, 2)1)(z — 2) =

for all nonreal z. There exists an essentially unique nondecreasing function
u(x) such that JC(£(a)) is contained isometrically in L%(u) whenever a is
regular with respect to m(t).

Essential uniqueness means that any other nondecreasing function »(x)
with the same property is related in such a way that »(8) — v(a) = u(b) —
w(a) whenever a and b are points of continuity of u(x).

Proof of Theorem 42. The existence of at least one nondecreasing function
u(x) with these properties follows from Theorem 40 and Problem 158. We
use the choice of such a function u(x) in showing that

7 T(w) = lim [B(t w)A(t, w) — A(t, w)B(t, w)]/(w — )

t—=00

cannot be finite for any nonreal number w. Let J{ be the union of the spaces
J(E(a)), a regular, and note that

T(w) = sup [F(w)]|

where the supremum is taken over all elements F(z) of A such that |F(2) || <
1in L2(u). If F(z) and G(z) belong to At, then

[F(2)G(B) — G()F(B)][(z — B)

belongs to M for every complex number §. If |[F(#)|| <1 and ||G()] < 1,
then

ILF() G(B) — G()F(B)][(x — B)| < T() [[FH)G(B) — GOF(B)/(E — B
< 2T()[IF(B)] + IGBNIIB — Bl

If T(«) is finite and if o is not real, consider any number f§ such that
I — a| < }|B — Bl and choose G(z) so that

1G(o)] > T(@)2 18 — «l/If — B
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It follows that

IF(B)| [1G(0)] — T()21f — al/If — BI]
< T(0)IG(B)] + T()IG(B)I218 — al/IB — BI.

By the arbitrariness of F(z),

TALIG(@)]| — T()2]p — al/If — Al
< T()|GB)| + T()IG(B)I21 — al/If — BI.

It follows that T(f) << co. On iterating this procedure we obtain the
finiteness of T(w) for all numbers w on the same side of the real axis as «.
Since T(w) = T(w), T(w) is finite for all nonreal numbers w. The above
estimate shows that 7T'(w) remains bounded in a neighborhood of any nonreal
point. By Problem 160, K(a, x + iy, ¥ + p) is a nondecreasing function of
» > 0 for each real x and each index a. By the arbitrariness of a, T(x + )
is a nondecreasing function of y > 0 for each real x. It now follows that
T'(w) is finite for all complex w and that it remains bounded on any bounded
set.
If (F,(2)) is a Cauchy sequence in the metric of JAl, the inequality

Fu(2) — F(2)] < T(2) (1) — (1) |

shows that (F,(w)) is a Cauchy sequence of numbers for every complex
number w. A limit function F(z) thercfore exists. It is entire since 7(z) is
bounded on bounded sets. Let J€ be the set of entire functions F(z) which
are obtained as limits F'(z) = lim F, (z) for some Cauchy sequence of elements
of M. Since

IF.(2)] < T(2) [IF, ()]

for every n, the inequality
[ (2)] = T(2) |1F(®)]

holds for all complex z if F(z) isin J€. Itis clear that J€ is a vector space over
the complex numbers and that it has a well-defined inner product inherited
from L3(u). If (F,(2z)) is a Cauchy sequence of elements of JC, then for every
n there exists an element G, (z) of M such that [|F, () — G, < 1/n.
The sequence (G ,(z)) is then a Cauchy sequence of elements of A. By the
construction of JC there exists an element F(z) of J¢ such that F(z) =
lim G, (z) for all complex z. Sincelim ||F(t) — G,(¢}| = Oandlim |F,(¢) —
G,(t) || =0asn— oo,lim ||F({) — F,(t)| = 0asn— co. Thusevery Cauchy
sequence of elements of J& converges to an element of J, and J is a
Hilbert space.

We show that the space JC satisfies the axiom (H1). If F(z) is in J€ and
has a nonreal zero w, there exists a sequence (F,(z)) of elements of G such
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that F(z) = lim F,(z) in the metric of J¢. If L(z) is the choice of an element
of A which has value 1 at w, then

belongs to AL for every n, G, (w) == 0, and F(z) = lim G,(z) in the metric
of J6. It follows that (G, (z)) is a Cauchy sequence in the metric of J¢. This
implies that (G,(z)(z — ®)/(z — w)) is a Cauchy sequence in the metric of
Je. Since

F(2)(z — ®)[(z — w) = lim G ,(z)(z — @)[(z — w),

it belongs to J€. It clearly has the same norm as F(z) and (Hl) follows.
The axiom (H2) follows from the inequality

[F(w)]| < T(w) 1F@)1,

which holds for every F(z) in J¢. The axiom (H3) has an obvious proof. By
Theorem 23 the space J€ is equal isometrically to a space JC(E(0)). By
construction JE(E(00)) contains J&(E(a)) isometrically for every regular
number a. By Theorem 33 there exists a space J¢(M(a, o)) such that

(A(OO, Z)’ B(OO> Z)) = (A(d, Z), B(aa Z))M(a> @0, Z)'

When « and 4 are regular and a < b, then there exist spaces JC(M(a, b))
and JE(M(b, o)) such that
(A(b, z), B(b, 2)) = (A(a, z), B(a, z))M(a, b, z),
(A(00, z), B(0, z)) = (A(b, 2), B(b, 2)) M(b, 0, z).

By Problem 100 we can conclude that

M(a, 00, z) = M(a, b, zZ) M (b, 0, z).
It follows that

[M(a, b, w)IF(a, b, w) — I](w — )
< [M(a, 00, w)IM(a, 0, w) — I][/(w — ®)

for all complex w. Thus the matrices on the left have an upper bound as
b s oo through regular points, for each fixed a and w. When w = 0 this
implies that the matrices
b) — b) —
) — mia = (14 o0 80— 5)
plb) — pla) »(b) — ()
have an upper bound as b # oo through regular points. This is contrary to
the hypothesis that lim [«(f) 4 y(¢)] = o0 ast # oo through regular points.
We must therefore grant that T(w) == oo for every nonreal number w.
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To prove uniqueness of y(x), consider any nondecreasing function y(x)
of real x such that JE(E(a)) is contained isometrically in L?(») whenever ¢
is regular with respect to m(t). If a is regular, then by Theorems 30 and 31
there exists a function W(a, z), analytic and bounded by 1 in the upper half.
plane, such that

E(a, z) -+ E*(a, z) W(a, z) f+00 |E(a, t)] 2d[u()
E(a, z) — E*(a, z)W(a, z) (t — %)% + »*

for » > 0. By Theorem 32 and Problem 135,

1 4+ W(a, 2) _ [D(a, b, 2) +iC(a, b, 2)] + [D(a, b, z) — iC(a, b, 2)]W(b, z)
1 — W(a, z) [4(a, b, z) —iB(a, b, 2z)] — [A(a, b, z) 4+ iB(a, b, 2)]W(b, z)

for y > 0 when a and b are regular points, a < b. By the first part of the
proof,

lim [B(a, b, z)A(a, b, z) — A(a, b, 2)B(a, b, 2)]/(z — Z) =

b0
when z is in the upper half-plane. By Problem 155,

1+ W(a, z) lim D(a, b, z) + iC(a, b, z)
1 — W(a, 2)  yr0 A(a, b, z) — iB(a, b, z)

Since a similar analysis applies with u(x) replaced by »(x),

f+oo |£(a, f)lzd,u t) )’f+oo | £(a, 8)|2dv(1)
(t — x) (t — %)% 4 »*

for y > 0. By the Stieltjes inversion formula,

f \Ea, 1) |2 (t) f |\ E(a, £)|2dy(2)

whenever « and v are points of continuity of pu(x). It follows that »(8) —
v(a) = u(b) — pu(a) whenever a and b are points of continuity of p(x).

PROBLEM 162. IfJC(F) is a given space and if w is a given point above the
real axis, show that there exists a linear function E;(z) such that J¢(E,)
exists, A, (w) = 4(w), and B,(w) = B(w).

PROBLEM 163. If lim [a(f) + y(f)] = o as ¢ A s, in Problem 158,
show that N
Lim [B(t, 2)A(t, z) — A(t, 2)B(t, 2)]/(z — 2) = o0

tA8y
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for all nonreal z. If there is no index ¢ such that the interval (¢, s, ) contains
only singular points, show that there exists an essentially unique nondecreas-
ing function u(x) of real x such that J¢(E(a)) is contained isometrically in
L?(u) when a is regular with respect to m(t). Show that the union of the
spaces J(E(a)), a regular, is dense in L*(u).

«(t) B()
B ¥(1)
valued function of ¢ > 0 whose entries are continuous, real valued functions
of t. Assume that «(t) > 0 for ¢ > 0 and thatlim «(t) = O as ¢\ 0. Assume
that (E,(t, z)) and (E_(1, z)) are given families of entire furctions, which
have no real zeros and which have value 1 at the origin, such that spaces
Je(E,.(¢)) and JC(E_(t)) exist for every ¢ > 0, E,({, w) and E_({, w) are
continuous functions of ¢ for every w, and

PROBLEM 164. Let m(t) = ( ) be a nondecreasing, matrix

(A (b, w), B (b, w))] — (4, (a, w), B, (a, w))] .
— wf (A, (t, w), B, (t, w))dm(t),

(A—-(b> w)’ B——(b, w))l - (A—(d> w): B—(“J w))l
= w f” (A_(t, w), B_(t, w))dm(z)

for 0 < a < b < o0, and such that #K(a, 0, 0) = a(a) = 7K_(a, 0, 0) for
a>0.1If
A, B (i
P(t, Z) — ( +(’Z) +(’Z)),
A_(t,z) B_(t, z)
show that
P(b, 2)IP(b, w) — P(a, z)IP(a, w) = (z — o) Jb P(t, z)dm(£)P(t, w)

whenever 0 < ¢ < b < co0 and that

lim P(t, 2)IP(t, w) = T (2)IT_(w)

o
for some entire functions 77, (z) and T_(z) which are real for real z. Show
that 77, (z)T_(z) vanishes at the origin, and use this fact to show that it
vanishes identically. Show that there exists an entire function S(z), which
is real for real z and which has no zeros, such that E_(f, z) = S(z)E_(, 2)
for all t > 0.

() B
B (1)
valued function of ¢ > 0 whose entries are absolutely continuous, real
valued functions of t. Let o(t) be a nondecreasing, continuous function with
respect to which the entries of m(t) are absolutely continuous. Let 7(t) be a

PROBLEM 165. Lect m(1) :( ) be a nondecreasing, matrix
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largest nondecreasing function such that m(t) — iIr(f) is nondecreasing,
Construct Borel measurable functions «() and »(f) of ¢ > 0 such that

a(b) — a(e) = [ u(na()do(s),

a

B(b) — B(a) = Re [ u())a(t)do(s),
y(8) — p(a) = [* o(0)a(e)doz),
7(b) — 7(a) = Re fb iu(t)5(t)do (t)

when 0 < a < b < 00. Show that these functions can be chosen so that
u(t) has real values and so that the values of #(¢) are real in the set where
u(t) = 0. Show that an interval (a, ) contains only singular points with
respect to m(t) if, and only if, u(f) and v(f) are equivalent to linearly de-
pendent, real valued functions in (a, ).

43. COMPLETENESS OF L%m)

The solution of the structure problem for a given space J(E) is deter-
mined by knowledge of a nondecreasing, matrix valued function

() B
m(t)_(ﬁ(t) y<t>)

whose entries are continuous, real valued functions of ¢ in an interval. The
structure space L%(m) associated with m(¢) is constructed from the set of all
pairs (f(t), g(t)) of Borel measurable functions of ¢, defined in the interval,
which are constant in each interval of singular points, such that

(s D% = f (f (1), £()dm () (S (1), 8(8))~ < 0.

In giving the meaning of this last integral, we assume for definiteness that
the interval of parametrization is (0, o). The definition of the integral uses
the choice of a nondecreasing, continuous function ¢(f) with respect to
which «(t), B(t), and y(t) are absolutely continuous. For example, ¢(t) =
«(?) + () has this property. If 4(¢) and »(t) are constructed for m(¢) as in
Problem 165, the definition of the m-integral is

155 = & [ 1/ (0u) + e@)o(o)Pdo)
+ 3 [7 17060 + 030 dots).
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It is easily verified that this definition does not depend on the choice of
o(1), u(t), and »(f). In the same way, we define the inner product

(S, 8)s (05 0))m = %fow [F(Ou(t) 4+ g(o®1OuE) + §()5(t)]do(t)
3 [ LA0u() + s@aOIAEu() + §0)o()]do()

when |(f; ). < © and {(p, ¢)ll,, << 0. Two pairs of functions (f, g)
and (p, ¢) are identified with respect to m(t) if ||(f, &) — ($, ¢) |lm = 0. The
space of equivalence classes so obtained is a vector space with a well-defined
inner product. The definition of L%(m) uses only those pairs ( f(¢), g(t)),
I/, & I, < oo, which are equivalent to a constant in any interval {a, b) of
singular points. By this we mean that for any interval (a, 5) of singular
points, there exists a pair (x, ») of numbers such that

[Pt = r(0), 9 — ge)dm() (x — 1(8), » — ()= = 0.

Thus the space L2(m) is finite dimensional if there exist only a finite number
of regular points. We show that the space is complete.

«(t) B
B y(@)

function whose entries are continuous, real valued functions of ¢ defined in
an interval, then the corresponding space L%(m) is a Hilbert space.

THEOREM 43. If m() = ( ) is a nondecreasing, matrix valued

Proof of Theorem 43. Explicit proof is restricted to the special case in which
a(t), B(t), and y(t) are absolutely continuous functions of . But the argument
has an obvious generalization to the case in which «(t), f(¢), and y(¢) are
absolutely continuous with respect to a nondecreasing, continuous function
a(t). For convenience we assume that the interval of parametrization is the
half-line (0, 00). The general case is reducible to this one by a change of
variable. Let u(¢) and v(t) be Borel measurable functions of ¢ > 0 such that

a(b) — afa) = f: u(d)a(t)dt,
B(b) — p(a) = Re fb u(t)a(t)dt,
y(b) — y(a) = f: v(8)a(t)dt,
7(b) — (@) = Re i [ u(ys(ar

when 0 < ¢ << b < o0, where 7(¢) is a largest nondecreasing function of ¢
such that m(t) — iI7(t) is nondecreasing. Choose them so that «(#) is real
valued and so that (¢) has real values in the set where u(f) = 0. If(f(t), g(t))
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belongs to L*(m) and if 4(t) is the function of real ¢ defined by
h(t) = f(B)u(t) + g(t)o (1),
h(—t) = f(t)u(t) + g()3(t)
for t > 0, then A(¢) belongs to L¥(— o0, +c0) and
+00

IA % =4 [

Such a function 4(?) clearly has these properties:

(1) h(—t) = h(¢) almost everywhere in the subset of (0, 00) where
o(t) = o(t). .

(2) A(t) = 0 almost everywhere in the subset of (0, c0) where u(t) and
(t) both vanish.

(3) h(t) depends linearly on u(t) and »(t) in any interval (a, ), 0 < a <
b < co, which contains only singular points with respect to m(t).

Conversely, if 4(¢) is an element of L?(—co, 4 c0) which satisfies these
three conditions, define f(¢) and g(t) by

Sy = [h(—t)o(t) — ABB)]/[u(t)o(8) — u()o(1)],
g(t) = [h(t) — A(—=0)][[o(t) — (1))
in the set where v(¢) 3= 9(t), by
S = h()u@®)[[u(t)® + v()%],
g(t) = A()o(t)[[u(t)* 4 v(1)]

in the set where »(¢) = 9(¢) and ()% + v(¢)? 3£ 0, and by f(t) = g(t) =0
in the set where u(t) = v(t) = 0. It is easily verified that (f(¢), g(¢)) is an
element of L2(m) such that the corresponding element of L*(—co, + o0) is
h(t). Since the set of elements of L*(— oo, -+ co) which satisfy conditions
(1), (2), and (3} is closed in L?(— 0, -+ 00), it is a Hilbert space in the metric
of L2(— o0, + ). Since there exists a linear isometric’ transformation of
L2(m) onto this closed subspace of L3(— 0, 4 o), L%(m) is a Hilbert space.

|h(t)|2dt.

o0

I

44. EXPANSION THEOREM FOR SPACES J(E)

A space JC(E) can be recovered from its structure space L*(m) by an
isometric expansion. In describing the transformation, we use the function
x(a, t) which is equal to | when ¢ < ¢ and which is equal to 0 when ¢t > a.

THEOREM 44. Let {JC(E(1))} be a family of spaces, s_ < < s,, and let
it = (2020
B ()

tinuous, real valued functions defined in (s_, s, ). Assume that «(t) > 0 for

) be a nondecreasing function whose entries are con-
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¢t > s_, that lim «(f) = 0 as ¢ “ s_, that each function E(g, z) has no real
seros and has value 1 at the origin, that E(¢, w) is a continuous function of ¢
for each complex number w, and that

(A(b, w), B(b, w))I — (A(a, w), B(a, w))] = w f; (4(¢, w), B(t, w))dm(¥)

whenever s_ < a < b <s5,. Then y(c, t)(4(t, w), B(t, w)) belongs to L*(m)
as a function of ¢ for every regular number ¢ and every complex number w.
For each element (f(t), g(t)) of L2(m) which vanishes outside of (s_, ¢),
define a corresponding function F(z) by

nF(w) = | (f(0), £(8)dm(0) (AL, B), B(t, @) -

for all complex w. Then F(z) is an entire function, it belongs to J¢(E(¢)), and

m [ 1B [EG, e = [ (f(0), g(t))dm(®) (£(), £(0))~

If G(z) is in J(E(c)), then G(z) is equal to F(z) for some such choice of
(F(1) &(8)) in LA(m).
Proof of Theorem 44. If (a, b) is an interval of singular points, then
(A(t, 2), B(t, 2)) = (A(a, 2), B(a, 2)) M(a, 1, z)
for a < t << b, where
Ma,t, z) = (

Tt follows that

A(t, 2) = A(a, z) — A(a, 2)[B(t) — B(a)]z — B(a, 2)[(t) — y(a)]z,

B(t, z) = B(a, z) + A(a, 2)[a(t) — a(a)]z + B(a, 2)[f(t) — B(a)]z.
If h(t) = [a(t) + y(O)] — [«(a) + p(a)], then

a(t) — a(a) = ph(t),  B() — Bla) = qh(t),  y(O) — y(a) =7h(3)

for a < t < b, where p, ¢, and r are real numbers such that p >0, r = 0,
and pr = ¢2. It follows that

[ (B(a) — B(0), olt) — o(@))atm(t) (Bla) — B(t), xlt) — (@)~
r g
q r
[" (@) — (), B) — B@))am(t)(y(a) — (), B(1) — B(a))~

1 —[B() — f@lz  [(t) — a(a)]z )
—ly(t) — y@lz 1+ [B() — B@)]z)

==Pﬁﬁ% y—qm—ﬁmwﬁm=m

p
= (= m@ ﬁe4qrﬁmmﬂm=a
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So (A(t, z), B(t, z)) is equivalent to a constant in any interval of singular
points. By Problem 139,

7K (b, w, z) — wK(a, w, z) = ; (A(t, 2), B(t, 2))dm(t) (A(t, ), B(t, w))-

whenever s_ < a < b <s5,. Since we assume that a(¢) > 0 for t > 0 and
that lim «(f) = 0 as ¢ "\ s_, we can conclude that lim K(¢, w, z) = 0 for al]
complex z and w as ¢\ s_, by the proof of Theorem 40. It follows that

Ko, w, z) = fs_ (A(, 2), B(t, 2))dm(t) (A(t, w), B(t, w))~

for all complex zand wifs_ < ¢ <s,. So y(c, t)(A(t, w), B(t, w)) belongs to
L?*(m) for every complex number w if ¢ is regular with respect to m(t). Its
transform K (¢, @, z) is an entire function which belongs to JE(E(c)), and the
identity

- fj: K(c, &, )K(c, B, ) | Ec, t)|-2dt
— [7 (4(t, 0), B, @)dn(t)(4(1, §), B2, )

holds for all complex numbers « and . Therefore if (f(t), g(t)) is a finite
linear combination of elements y(c, ¢)(A(t, w), B(t, w)) of L2(m), the corre-
sponding entire function F(z) belongs to J(E(c)) and

m [T R0 B 1 = [T (), e0)dm(s) (£, (0)

The same conclusion follows by continuity if (f(t), g(¢)) belongs to the closed
span () of the functions y(c, ¢)(4(t, w), B(t, w)) in L%*(m). The set of
elements of J(E(c)) which are transforms of elements of (c) is a closed
subspace of J¢(E(c)) which contains K(c, w, z) for all complex numbers w.
It is therefore the full space, and every element of J¢(E(c)) is the eigen-
transform of an element of AG(c).

We show that AG(a) is contained in AG(d) when a and b are regular
points, a < b. Let (f(¢),g(t)) bein M(a) and let ( £,(1), g,(t)) be its projection
in AG(b). If F(z) is the eigentransform of (f(t), g(¢)), then

= [ (£(), g(W)dm(s)(A(t, ®), B(t, @)~
= [ (A0, ea)ydm(t) (A, @), B, @)~
for all complex w. By what we have already shown,
m [ 1P /B, )2t = [ (f10), ¢(0))dm(t) (£(2), (0))
m [ 1F@E®, 02t = [ (A1), 60(0)dm(t) (fi(0), &n(8))~.
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Since J6(E(a)) is contained isometrically in JE(E(8)) by Theorem 40,

f (f(0), £(8))dm(8) (f(2), £(5))~ f (f1(8); &.(0))dm(t) (2(8), &a(8))

Since (fi(t), g1(t)) is the projection of (f(t), g(t)) in AG(b), it follows that
(f(t), &) = (f(8), g1(1)) in L3(m). This completes the proof that Al(a) is
contamed in AG(8).

If ¢ and b are regular points, if ¢ < b, and if (f(t), g(¢)) is in A(b), then
its projection in A(a) is x(a, ) (f(£), g(t)). This is clear if

(@), g()) = 2(b, 1)(A(t, w), B(t, w))

for some complex number w. The general case follows by linearity and
continuity.

If ¢ is a regular point, we show that AG(¢) contains every element of L2(m)
which vanishes in (¢, s,). It is sufficient to show that there is no nonzero
element ( f(¢), g(t)) of L2(m) which vanishes in (¢, 5,) and which is orthog-
onal to AG(c). In this case x(a, £)(f(¢), g(t)) is orthogonal to A(c) for every
regular number a < ¢. Therefore

f (f(8), &(1))dm(8)(A(t, w), B(t, w))~ = 0

for all complex numbers w if ¢ and b are regular numbers and if a < &. If
(a, b) is an interval of singular points, (f(t), g()) and (4(, w), B(t, w)) are
equivalent to constants in (a, b). It follows that the same formula holds also
when ¢ or b is a singular point. Let o(¢) = a(t) + v(t) and p(t), ¢(¢), and
7(¢) be the Borel measurable functions such that

a(b) — a(a) = [ p)do(t),
Bb) — Bla) = [ g(t)datt),
y(6) = p(a) = [ r()do()

whenever s_ < @ < b <s,. Then
1 13

fﬁﬂmmm«” “ﬁwmwﬁmmrww=o
: at)

whenever s_ << a < b <s,. It follows that

() q@®)

), g(t A(t, w), B(t, w))~ =
(f()g())<q(t) r<t))(( ), B(t, w))
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except in a set of zero o-measure. But for each fixed ¢,
(4(t, w), B(t, w)) and (A(t, @), B(t, w))
are linearly independent row vectors if w is a nonreal number. It follows that
<ﬂmam«m Wﬁ=o
g(t) (%)
except in a set of zero o-measure. So

(1) q(t)
¥

[4
1), g(1))~ = 0
o0 (t))(f() &(®))

(), g(t))(
except in a set of zero g-measure. This implies that'

[, e@)am@ (1), g)= = 0.

So J(c) contains every element of L?(m) which vanishes in (¢, s,). The
theorem follows.

PROBLEM 166. In Theorem 44 let (f(¢), g(f)) be an element of L%(m)
which vanishes in (¢,5,) and let F(z) be the corresponding element of

Je(E(c)). Show that (f(#), g(t)) belongs to L%*(m) and that F*(z) is the
corresponding element of JC(E(c)).

45. EXPANSIONS AND INTEGRAL
TRANSFORMATIONS

We now relate the expansion of Theorem 44 to an integral transformation
in L%(m).

THEOREM 45. In Theorem 44 let (f,(t), g,(¢)) be an element of L%(m)
which vanishes in (¢, s,). If

[ (h®), a®)dn(t) (1,0~ =0,

then there exists an element (f(¢), g1(¢)) of L2(m), which vanishes in (¢, s..),
such that

(A8), sONT — (fu(@), gu(@)T = [* (A1), ga())dm()
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whenever s_ < a < b <s,. If Fy(z) and Fy(z) are elements of JC(E(c))
such that

mhy(w) = f (fe(t), gu(£))dm(2) (A(t; @), B(t, @)~

for all complex w, then Fy(z) = zF;(z).

Proof of Theorem 45. If (f,(t), go(t)) is a given element of L2#(m) which

vanishes in (¢,s,) and if f“ (fo(8), go(t))dm(i)(1, 0)~ == 0, then the corre-
8.

sponding entire function F,(z) has a zero at the origin. Since E(c, z) has a
nonzero value at the origin by hypothesis, there is an element [7(z) of
J(E(e)) such that Fy(z) = zFy(z). By Theorem 44 there exists an element
(f2(®), g1(1)) of L2(m) which vanishes in (¢, s, ), such that Fy(z) is the corre-
sponding element of 3(E(c)). To prove the theorem we must show that the
identity

() ) — (i(@), (@) = [* (0, al0))dm()
holds whenever s_ < a < b < s,. Since the transformation

(fo(8) = (/1(1), &1(1)

so defined is continuous, it is sufficient to obtain the identity for special
choices of (f3(t), g,(t)) whose span is dense in the set of elements of L*(m)
which satisfy the hypotheses of the theorem. By Problem 51 the function

Lic, w, z) = 2mi(0 — z)K(¢c, w, z)
satisfies the identity
L(e, o, @) L(c, w, z) = L(¢, o, z)L(¢, w, &) — L(¢, & z)L(c, w, &)
for every nonreal number o. It follows that

z(a — @)K (e, o, 0)K(c, w, z) — z(a — @)K(¢, w, 2) K (e, a, z)
+ z(& — @)K (c, w, @) K(¢, &, z)
(¢ — &)K(c, o, ) K(c, w, z) — &(ax — @) K(e, w, &) K(e, @, z)
(@ — @)K (e, w, 1)K (c, &, z).

&1

If w is held fixed and if
(fa(1); g(1)) = @ — @)K (e, o, @) x(e, 1) (A(L, @), B(t, @)
— &(a — @)K(c, w, &) (e, 1) (A(t, @), B, &)
+ (& — @) K(c, w, &) x(c, 1) (A(t, «), B(t, w)),
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then
Fy(z) == w(o — &)K(c, o, ) K (¢, w, 2)
— & — W) K(¢, w, 1) K(c, a, 2)
+ a(@ — w)K(e, w, 3)K(c, &, z),
Fi(z) = (e — @) K(c, o, ) K (¢, w, z)
— (o0 — @)K (¢, w, ) K(c, «, 2)
+ (& — ®)K (¢, w, 8)K(c, &, 2),
and

(S1(t), &a(8)) = (o0 — &) K(e, o, o) x{c, 1) (A(t, @), B{t, w))
— (a0 — @)K (¢, w, &) y(c, t) (A(t, &), B¢, &))
+ (& — ) K(e, w, @) x(c, 1) (4(t, o), B(L, «)).

The required identity now follows from the hypothesis that
(4(b, w), B(b, w))I — (A(a, w), B(a, w)}I = w fb (4(t, w), B(t, w))dm(t)

whenevers_ < a < b < s,. To complete the proof of the theorem, we must
show that the closed span of the functions

w(oe — &) K(c, o, 0)K(¢, w, z) — a(o — @) K{c, w, 0)K(c, &, z)
+ a(a — @)K(c, w, 3)K(c, &, z)

in J(£(c)) contains every function which vanishes at the origin. For this
we must show that there is no nonzero element Fy(z) of JC(E(c)) which
vanishes at the origin and which is orthogonal to such special functions. In
this case

w(@ — ) K(c, o, 0)Fy(w) — a(@ — w)K(c, w, 2)Fy()
+ (o — w)K(c, w, &)Fy(@) = 0

for all complex w. Since zF,(z) is then a linear combination of 4(c, z) and
B(c, z), Fy(z) is a constant multiple of K(¢, 0, z). Since Fy(z) vanishes at the
origin, it vanishes identically. The theorem follows.

PROBLEM 167. Let {JC(E,)} be a sequence of spaces and let ¢, (%) be a
phase function associated with E, (z) for every n. Assume that ¢(x) =
lim ¢, (x) exists as a finite limit as n — oo and that p(x+) — p(x—) < =
for all real x. If ¢(x) is not a constant, show that there exists a space JC(£)
such that ¢(x) is a phase function associated with E(z). Hint: See Problem 89.

PROBLEM 168. In Problem 154 show that lim ¢(a, x)/x = O for all real »
as ¢\ s_. Hint: See Problem 93. When x = 0, @(a, x)/x is equal to a(a) —

ofs_).
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a(t)  p(o)
B v(®)

valued function of ¢ > 0 whose entries are continuous, real valued functions
of t. Let M(t, w) be the unique, continuous, matrix valued function of ¢ for

every w such that

PROBLEM 169. Let m(f) :( ) be a nondecreasing, matrix

M(a, w)] — I = w fo“ M(t, w)dm(t)

i t
for a = 0. For each n=1,2,3,-++, let m,(t) = (a”() Pul )) be the
matrix valued function of ¢ > 0 defined by Balt) 7vald)

w,() = a() +tln,  Ba(t) =B, va) =y(O) +

Let M (t, w) be the unique, continuous, matrix valued function of ¢ for
every w such that

M (@, )] — I = w fo“ M, (t, w)dm, (1)

for a > 0. Show that
Ma, z) = lim M,(a, z)
for a > 0, uniformly for z in any bounded set. Let ¢(a, x) be the phase
function associated with A(a, z) — ¢B(a, z) which is zero at the origin. Let
@.(a, x) be the phase function associated with 4,(a, z) — B, (a, 2) which is
zero at the origin. Show that
pla, x) = lim @, (a, x)

for ¢ > 0 and all real «.

AONN:0)
Bl ()

valued function of ¢ > 0 whose entries are continuous, real valued functions
of t. Let M(t, w) be the unique, continuous, matrix valued function of ¢ for

every w such that

PROBLEM 170. Let m(z) :( ) be a nondecreasing, matrix

Mg, w)] — I =w [* M(t, w)dm(1)

for 4 > 0. For each n =1,2,3,---, let m,({) = (;"Eg ﬁ"g;) be the
n y’n

unique, matrix valued function of ¢ which is linear in each interval

[kin — 1jn, kfn],  k=1,2,8,"+",

and which agrees with m(¢) at the points k/n, k = 0, 1,2, - - -. Let M, (¢, w)
be the unique, continuous, matrix valued function of ¢ for every w such that

Mg, )] — [ = w jo M,(1, w)dm, ()
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for a = 0. Show that

M(a, z) = lim M, (a, z)
for a =0, uniformly for z in any bounded set. Let ¢(q, x) be the phase
function associated with A(a, z) — iB(a, z) which is zero at the origin. Let
@,{(a, x) be the phase function associated with 4,(a, z) — iB ,(a, z) which
is zero at the origin. Show that

pla, x) = lim @, (q, x)

for ¢ = 0 and for all real x. e
¢ 13
PROBLEM 171, Let m(t) = (oc() ‘8()) be a nondecreasing, matrix
p) »@)

valued function of { > 0 whose entries are continuous, real valued functions
of t > 0. Assume that lim «(f) > — o0 and lim 9(¢) > —oo as ¢ 0. Show
that lim S(2) exists as ¢ 0 and that the limit is finite.

46. AN ESTIMATE OF PHASE FUNCTIONS
An estimate of phase functions can be given from a knowledge of m(#).

THEOREM 46. Tor k = 1, 2, let (£,(¢, z)) be a family of entire functions,
%, () Br(0)
Be(t)  vi(0)

function whose entries are continuous, real valued functions of t > 0. Assume
that each function E,(a, z) has no zeros on or above the real axis, that it
satisfles the inequality |E,(a, ¥ — ©)| < |E(a, x -+ iy)| for » > 0, and that
it has value 1 at the origin. Assume that E, (¢, w) is a continuous function of ¢
for every w, that

(Ak(b: w): Bk<b> w))] - (Alc(a3 w)’ Bk(a’ w))] =w fab (Alc(ta w): Bk<t, lU))dmIc(t)
whenever 0 < a < b < o0, and that
lim (8,1, ) A0, 0) — At w)Bi(t, )0 — ) = 0

t >0, and let my(t) = ( ) be a nondecreasing, matrix valued

 forall complex w. Let @,(a, ) be the phase function associated with E,(a, z)
which is zero at the origin. If

my(b) — my(a) < my(b) — my(a)
whenever 0 << a << b < o0, then
(pl(a: x)/x < ()92(62, x)/x

for all real x when a > 0.
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Proof of Theorem 46. Consider first the special case in which each function
my(¢) is piecewise linear and the nonnegative matrix [my(6) — my(a)] —
[my(b) — my(a)] has no nonzero kernel when a < b. If (a, b) is a common
interval of linearity for m,(t) and my(f) and if we can always deduce that
@1 (b, %)[x < @a(b, x)[x from the hypothesis that @,(a, ¥)/x < @,(a, x)/x, then
the desired inequality can be obtained by induction from the trivial in-
equality @,(0, x)/x < @,(0, x)[x. To see that this conclusion is valid, note
that @,(t, ) is a differentiable function of ¢ in (g, b) for each fixed x by
Problem 154 and that

@ity %) [x = o (£) cos? @y (t, ) ‘
- Qﬁ,'c(t) cos @y (1, x) sin @ (2, x)
+ 7(2) sin? gy (t, %)

where a(t), Bi(t), and p,(t) are constant in (a, b). Then @y, x)/x —
@4(t, %)/ has a continuous derivative which is strictly positive at all zeros.
If this difference is nonnegative for ¢ = g, it must remain so for ¢ = 5. The
desired inequality follows in this case. The general case in which m,(¢) and
my(t) are piecewise linear follows on applying Problem 169 to my(). More
generally, if lim p,(t) > —o0 as ¢ \ 0, then lim y,(f) > —co as ¢\ 0, and
lim f,(¢) and lim B,(t) exist as finite limits as ¢ O by Problem 171. The
desired inequality follows in this case on applying Problem 170 to m,(¢) and
my(t). In the remainder of the proof we assume that lim y,(t) = —c0 as
t™ 0.

If my(¢) is constant in some interval (0,¢), then By(t,z) =0 and
@(t, %) = 0 for 0 < ¢ < ¢. Since @y(t, x)/x = 0 for all tand x, @y(t, x)[x =
@i(t, x)[x for 0 < t < ¢. The inequality now follows for { > ¢ by an argu-
ment used earlier in the proof. In what follows we assume that m;(¢) is not
constant in any neighborhood of the origin.

Ifa > 0let M,(a, ¢, w) be the unique, continuous, matrix valued function
of t > a for every w such that

My(a, by w)] — I =w [ My(a, t, w)dm (1)
Ja

when b > a. Define M,(a, b, w) = 1 for 0 < b < a, and let ¢,(a, b, x) be
the phase function associated with 4,(a, b, z) — iB;(a, b, z) which is zero
at the origin. By what we have already shown, ¢,(a, b, x)[x < @,(b, x)/[x for
all 4 and x when a > 0. The theorem follows as soon as we show that

(pl(bﬁ x)/x = hm gvl(a: b: x)/x

a0

Since we work only with the first family of entire functions in obtaining this
formula, we can drop the subscript 1 from the notation.
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From the first part of the proof we know that ¢(a, b, x)/x < @(b, x)/[x
and that @(a, b, x)/x increases as a decreases for each fixed x. Therefore
p(b, x) = lim @(a, b, x) exists as a 0. When 0 < a < b < ¢,

tan @(a, ¢, x) = B(a, ¢, x}/A4(a, ¢, x)
_Ala, b, x)B(b, ¢, x) + B(a, b, x)D(b, ¢, x)
Ala, b, x)A(b, ¢, x) + B(a, b, x)C(b, ¢, x)
_ B(b, ¢, x) + tan @(a, b, x)D(b, ¢, x)
A(b, ¢, x) + tan @(a, b, x)C(b, ¢, x)

In the limit as a 0 we obtain

B(b, ¢, x) + tan p(b, x)D(b, ¢, x)
A(b, ¢, x) + tan p(b, x)C(b, ¢, x)

tan (¢, x) =

It follows that 9(f, x) is a continuous function of ¢t > 0 for each fixed x.
Since p(t, x)[x < @(t, x)/x and since lim @(¢, x)[x = 0 as ¢ 0 by Problem
168, lim p(t, x)/x = 0 as t \ 0. We show that (¢, x+) — p(t, x—) < =
for all £ and x. Since p(f, x+) — w(f, x—) is a continuous function of ¢ > 0
for each fixed x and since it has limit 0 as ¢ \ 0, it is sufficient to show that
p(t, 2+) — w(t, x—) 5= o for all indices & If y(c, x+) — v, x—) ==
for some index ¢, then tan y(c, x+) = tan p(c, x—). It follows that
tan p(t, x+) = tan (¢, x—) for every index tand that w(, x+) — p(t, x—) =
0 modulo 7. Since y(t, x4+) and y(f, x—) are continuous functions of ¢,
w(t, x+) — p(t,x—) = = for all indices ¢ This is impossible because
lim 9(t, x+) = 0 and lim 9(4, x—) = 0 as £ \ 0. So we can conclude that
p(t, x4+) — p(t, ¥—) < 7 for all ¢ and .

If (b, x) vanishes identically for some index b, then ¢(a, b, x) vanishes
identically and «(a) = «(b) for 0 < a << 4. In this case B(b, z) and ¢(b, x)
vanish identically, and the desired limit follows trivially. If ¢ (b, x) does not
vanish identically, then by Problem 167 there exists a space JC(Ey(5)) such
that (b, x) is a phase function associated with E(b, z). Since (b, 0) = 0
we can choose Ey(b, z) so as to have no real zeros and so as to have value 1
at the origin. Since

B(a, b, x) 4 tan y(a, x)D(a, b, x)
A(a, b, x) + tan y(a, x)C(a, b, x)

tan (b, x) =

when a < b. These spaces can be chosen so that
(4o(b, 2), By(b, 2)) = (Ao(a, 2), Bo(a, 2))M(a, b, 2)

when 0 < a < b. It follows that y(b, x)/x — v(a, x)[x = «(b) — o(a) when
x=0and 0 < a < b. Since lim ¢(q, x)/x = 0 and lim «(a) = 0 as a ¢ 0,
«(b) = (b, x)[x when x = 0 and so «(b) = 7K (b, 0, 0). By Problem 164,
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E,(t, z) = S(z)E(l, z) for some entire function §(z) which is real for real z
and which has no zeros. This implies that ¢(¢, x) = @(i, x), and the desired
inequality follows in all cases.

PROBLEM 172. Let (E,(t, z)) be a family of entire functions, ¢ > 0, and

(ml) Balt)
1‘3“"2“)—(,32@) yalt)

entries are continuous, real valued functions of ¢ > 0. Assume that each
function E,(a, z) has no zeros on or above the real axis, that it satisfies the
inequality |Ey(a, x — 1) < |Ey(a, » + ip)| for y > 0, and that it has value 1
at the origin. Assume that Fy(f, w) is a continuous function of  for every w,
that

(dy(b, ), Ba(b, )T — (4a(a, 0), Bala, )T = w [ (A43(t, w), Ba(t, 0))dma(0)

) be a nondecreasing, matrix valued function whose

whenever 0 < @ < b < 00, and that

li\m [Ba(t, w) Ay(1, w) — Ay(t, w)By(t, w)]/(w — @) = 0

&N
for all complex w. Let m,(t) be a nondecreasing, matrix valued function
whose entries are continuous, real valued functions of ¢ > 0, such that

my(b) — my(a) < my(b) — my(a)

whenever 0 < a < b < co. Show that there exists a family (E,(f, z)) of
entire functions, ¢t > 0, such that each function F;(a, z) has no zeros on or
above the real axis, satisfies the inequality |E(a, x — )| < |Ei(a, x + )]
for y > 0, and has value 1 at the origin, such that E,(¢, ) is a continuous
function of ¢ for every w, such that

(A, (b, w), Bulb, ) — (As(a, ), Byla,w))T = w [ (Ay(t,0), Ba(t, w))dmy (1)
whenever 0 << a < b < 00, and such that

ltirr;,[Bl(t, w) Ay (t, w) — Ay(t, w)By(t, w)]/(w — @) =0

for all complex w.

PROBLEM 173. Let P be a 2 X 2-matrix having real entries and deter-
0

1) Q—forsome?2 X 2-matrix

1
minant — 1. If P2 = 1, show that P = Q(O

@ having real entries and determinant ].






CHAPTER 3

Special Spaces

47. SYMMETRY IN SPACES J(F)

A simple example of a space J(E(a})) is obtained with E(a, z) =
exp (—iaz) for any number @ > 0. The space JC(E(a)) is the Paley-Wiener
space of entire functions of exponential type at most @ which are square
integrable on the real axis. These spaces are contained isometrically in
L#(— o0, +0), and JC(E(a)) is contained isometrically in JE(E(b)) when
a > b. The integral equation is

(4(a, 2), B(a, 2)I — (1,001 = z [ (A(t, 2), B(t, 2))dm()

=)

All points ¢ > 0 are regular with respect to m(t). The space L*(m) is the
space of pairs (f(t), g(¢)) of elements of L3(0, co) in the norm

1@, g0 = [7 1@ + [ 19012
If (f(t), g(t)) belongs to L2(m) and vanishes outside of (0, a), then
j S cos (tz)dt + f ) sin (tz)dt
belongs to JC(E(a )) and
wfj: ]F(t)|2[1t~f 110 |2dt+f )|2dt.

Every element of J&(E(a)) is of this form. In this case the expansion theorem
for Hilbert spaces of entire functions is equivalent to the Fourier trans-
formation. The usual form of the Fourier integral is obtained on extending

with

165
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Jf(x) so as to be an even function of real x and extending g(x) so as to be an
odd function of real x. The expansion then reads

2mh(z) = |

—0

-+

LS () + dg(e)]edt

and

2 [7 B = [ | fte) + ig(0)

The Paley-Wiener spaces have remarkable special properties. A first
important property of the Paley-Wiener spaces is symmetry about the origin,
By this we mean that the function F(— z) belongs to the space whenever F (2)
belongs to the space and that it always has the same norm as F(z). Any
space JC(E) such that £*(z) = E(—z) has the same symmetry property, as
is easily verified from the definition of the space. Note that the condition
E*(z) = E(~z) is equivalent to the pair of conditions 4(z) = 4(—z) and
B(z) = —B(—z). These are satisfied when FE(z) = ¢~ since then
A(z) = cos (az) is an even function of z and B(z) = sin (az) is an odd
function of z.

THEOREM 47. Let J be a Hilbert space of entire functions which satisfies
(HI), (H2), and (H3) and which contains a nonzero element. A necessary
and sufficient condition that J be symmetric about the origin is that it be
equal isometrically to a space J¢(E) such that E*(z) = E(—z). IfJ€ contains
an element which has a nonzero value at the origin, then E(z) can be chosen

so that £(0) = 1.

Proof of Theorem 47. By Theorem 23 the space J is equal isometrically to a
space JO(E,). If Ey(z) = E¥(—z), then a space J8(E,) exists and F(z) —
F(—2z) is an isometric transformation of J¢(E,) onto J&(E,), as is easily
verified from the definitions of the spaces. Since we assume that J& is
symmetric about the origin, JC(E,) and J¢(E,) are isometrically equal. It
follows that

(42(2), By(2)) = (41(2), Bi(2))P
where Pisa2 X 2-matrix having real entries and determinant 1. Replacing
z by —z we obtain

TRERAE) N

0 —1):(‘42(2)»32(2))((1) _?)P

=@ s@e(, e

Since 4,(z) and B;(z) are linearly independent,

lo 1) =#lo _1)*
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o r=clo e

where Q is a 2 X 2-matrix having real entries and determinant 1. If we
define (A(z), B(2)) = (dy(2), Bs(2))Q, then A(z) and B(z) are entire
functions which are real for real z, a space JC(E) exists, and it is equal
isometrically to J¢. Since A(z) = A(—z) and B(z) = —B(—z), we obtain
the required condition E*(z) = E(—z). If J¢ contains an element which
has a nonzero value at the origin, then £(z) has a nonzero value at the origin.
Since B(z) is an odd function of z, it is zero at the origin. It follows
that A(z) has a nonzero value at the origin. If A,(z) = A(z)]4(0) and
B,(z) = A(0)B(z), then a space J&(E,) exists, it is equal isometrically to X,
E}(z) = Eo(—2z), and Ey(0) = L.

By Problem 173,

PROBLEM 174, Let J¢(£,) and J(E,) be spaces which are isometrically
equal. Show that E;(z) = Ey(z) if E}¥(z) = E,(—2z) and if E,(0) =1 for
k=12

PROBLEM 175. Let JC(E) be a given space such that E(z) has no real
zeros and E*(-—z)/E(z) is of bounded type in the upper half-plane. Let
u(x) be a nondecreasing function of real x such that Je(E) is contained
isometrically in L2(u). If u(x) is an odd function of x, show that JC(E) is
symmetric about the origin. Hint: Use Theorem 26.

PROBLEM 176. Let J6(E(a)) and JC(E(b)) be given spaces such that
Je(E(a)) is contained isometrically in Je(E(b)) and such that E(q, z) and
E(b, z) have no real zeros. Show that J¢(E(a)) is symmetric about the origin
if Je(E(b)) is symmetric about the origin.
PROBLEM 177. Let J¢(E(a)) and JE(E(b)) be given spaces such that

(A(b, 2), B(b, 2)) = (A(a, z), B(a, 2))M(a, b, 2)
for some space J&(M(a, b)) such that M(a, b, 0) = 1. Let

4(a, 2) = Ala, —2), By(a, z) = —B(a, —2),
Ay(a, b, 2) = A(a, b, —2z), By(a, b, z) = —B(a, b, —2),
Cy(a, b, z) = —C(a, b, —2z), Dy(a, b, z) = D(a, b, —2z).
If E*(b, z) = E(b, —2z), show that spaces J(E,(a)) and JC(M;(a, b)) exist
and that

(4(6, 2), B(b, 2)) = (As(a, 2), Bi(a, 2)) My(a, b, 2).
Show that E,(a, z) = E*(a, —z) = E(a, z) and that M,(a, b, z) = M(a, b, z).
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PROBLEM I78. IfE*(z) = E(—z)andif u(x) = — u(—x) in Theorem 40,
show that f(¢) is a constant and that E*(a, z) = E(a, —z) for all indices g,

PROBLEM 179. 1If () is a constant in Theorem 40, show that E¥(—2) =
$(z)E(z) for some entire function S(z) which is real for real z and has no
zeros. Show that §(z)8*(—z) = 1.

PROBLEM 180. Iff(f) = 0in Theorem 41, show that E*(q, z) = E(a, —2)
for a > 0.

PROBLEM 181. If f(t) = 0 in Theorem 42, show that u(x) can be chosen
so that u(x) = — pu(—x).

PROBLEM 182. Let JC(E) be a given space such that E*(z) = E(—2z),
Show that there exists a unique Hilbert space JE, of entire functions such
that F(z) — F(z%) is an isometric transformation of JC, onto the even
elements of JC(E). Show that the space Je, satisfies the axioms (H1), (H2),
and (H3). If J¢, contains a nonzero element and if y is a real number, show
that J€, is equal isometrically to a space JE(£,) such that

A(z) + yzB(z) = A,(z%) and zB(z) = B, (2?).

PROBLEM [83. Let J(Z) be a given space such that E*(z) = E(—2z).
Show that there exists a unique Hilbert space J6_ of entire functions such
that F(z) — 2F(2?) is an isometric transformation of J_ onto the odd
elements of J&(E). Show that the space JC_ satisfies the axioms (H1), (H2),
and (H3). If J¢_ contains a nonzero clement and if a is a given real number,
show that J€_ is equal isometrically to a space JC(E_) such that

A(z) = 4_(2%) and B(z)/z — ad(z) = B_(2?).

PROBLEM 184. Assume that E*(z) = E(—z) and that w(x) = —p(—x)
in Theorem 40, so that §(z) is a constant and E*(a, z) = E(a, —z) for all
indices a. For each index g, let A,(a, z) and B, (a, z) be the unique entire
functions such that

A(a, z) + y(a)zB(a, z) = A, (a, 2?) and zB(a, z) = B, (a, 2?)
for all complex z. Let
() =ale), @) =~ ["p0da(t), () = ["y()a).
t) B0

Show thatm,(t) = (Z+(t) ’ (t)) is a nondecreasing, matrix valued function
+ +
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of t, that E (¢, w) is a continuous function of ¢ for every w, and that
(A4(b, w), By (b, w))I — (A,(a, ), B (a, w))]

= w [ (4,6, ), B (t, w))dm, (1)

a
whenever s_ < a < b <s5,.

PROBLEM 185. Assume that E*(z) = E(—z) and that u(x) = —u(—x)
in Theorem 40, so that B(t) is a constant and E*(a, z) = E(a, —2z) for all
indices a. For each index a, let A_(a, z) and B_(a, z) be the unique entire
functions such that

Ala, z) = A_(a, 2%) and B(a, 2)[z — a(a)4(a, z) = B_(a, z%)

for all complex z. Let

w(a) = ["alidy(),  la) = ["adr(),  y_(a) = y(a).

« () B-(1)
p-(t) »-(t)

function of ¢, that E_(¢, w) is a continuous function of ¢ for every w, and that

Show that m_(t) = (

) is a nondecreasing, matrix valued

(A_(b, w), B_(b, w))I — (A_(a, w), B_(a, w))I
—w [* (A(t, w), B_(t, w))dm_(1)

“ —

whenever s_ < a < b <s,.

48. PERIODIC SPACES AND SUBSPACES

Another fundamental property of Paley-Wiener spaces is periodicity. A
space Je(E) is said to be periodic of period 4, A > 0, if F(z) — F(z — k) is
an isometric transformation of the space onto itself. This property is heredi-
tary in subspaces.

THEOREM 48. Let J¢(E(a)) and JE(E(b)) be given spaces such that
Je(E(a)) is contained isometrically in JE(£(b)) and E(a, z)/E(b, z) has no
real zeros. Then JC(E(a)) is periodic of period 4 if JE(E(b)) is periodic of
period 4.

LEMMA 10. Let F(z) be a function which is analytic and of bounded type
in the upper half-plane. If F(z) has no zeros in the half-plane, then

lim | F(h + &) [F(iy)| = 1
)
for every A > 0.
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Proof of Lemma 10. By Problem 24 we can write F(z) = P(z)/Q(z) where
P(z) and Q(z) are functions which are analytic and bounded by 1 in the
upper half-plane and which have no zeros in the half-plane. Therefore,
P(z) = 1[exp U(z) where U(z) is analytic and has a nonnegative real part
in the half-plane. There exists a number p >0 and a nondecreasing
function u(x) of real x such that

. 3 [ee] d t
—log|P(x + 9)| = Re Ulx + i) = py + gfjw (—;ﬁ—&rﬁ
for y > 0. It follows that
log |P(k + iy)[P(iy)| yfwwt —Fw—jﬂi—
w B LR mdee (= R)?

J'+oo (h — 21)y du(t)
T B2 (t— R4

Since [2ty| < ¢® -+ »2, we obtain

| t0g 1P+ )P0 | < - [+ U D).

o (t— %)% + 7
By the Lebesgue dominated convergence theorem,

lim |P(h 4 1) /P(y)] =
Y+

Thesame formula holds with P(z) replaced by Q(z), and the lemma follows.

Proof of Theorem 48. 1If LE,(b, z) = E(b, z — h), then a space J&(E,(b))
exists, and the transformation F(z) — F(z — h) takes JE(E(b)) isometrically
onto JC(E, (b)), as is easily verified from the definitions of the spaces. Since
we assume that JC(E(0)) is periodic of period 4, JC(E, (b)) is equal isometrically
to JE(E(8)). It follows, that

(4(2), B(2)) = (4(z — k), B(z — h))P

b q

) which has real entries and determinant 1.
r s

for some matrix P = (

Since we then have

E(b, z - h)|E(b, 2)
=g(p -+ s —ig+ir) + §(p — s —ig —i)E*(b, 2)[E(b, z),

where E*(b, z)[E(b, z) is bounded by 1 in the upper half-plane, we obtain

|E(6, z + B)[E(b, 2)| < |3(p+ 5 —ig +in)] + [3(p — s — ig — ir)|
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for y > 0. Since JC(E(a)) is contained in JC(E(b)), E(a, z)|E(b, z) is of
bounded type in the upper half-plane. By Lemma 10,
lim [[E(b, b + @)[E(a, b + 9)]/[E(b, 1) [E(a, »)]] = L.

¥t
Since we know that
tim sup |E(b, h + ) [E(b, )]
B <13(p + 5 —ig b inl + 13(p — 5 — ig — in)l,

we can conclude that
tim sup | (e, h + D)/E(e, b)|
y—=>+ow
<|3p+s—ig+ )|+ 13(p — s —ig —ir)l,

Since E(b, z)/E(a, z), E(b, z + h)|E(b, z), and E(b, z 4 k)[E(a, z - k) are
of bounded type in the upper half-plane, E(a, z 4 %)[E(a, z) is of bounded
type in the half-plane. Since E*(a, z + h)[E(a, z -+ h) is bounded by 1 in
the upper half-plane, E*(a, z + h)[E(a, z) is of bounded type in the half-
plane and

lim sup |E(a, h — i)[E(a, iy)]
Y-+
<W(p+ s —ig+in] + 15 —s —ig — )l

Since JE(E(a)) is contained isometrically in JC(£(8)),

fj:’ (1) /E(a, 1) |2dt — f F(0)/E(b, 1) |2dt

for every F(z) in J(E(a)). Since [F(z)E(a, w) — E(a, 2)F(w)]/(z — w)
belongs to JE(£(a)) whenever F(z) belongs to JE(E(a)), it belongs to JC(E(b))
whenever F(z) belongs to JS(E(b)). Since JC(E(b)) is periodic of period 2,
[F(z + h)E(a, w) — E(a, z + h)F(w)]/(z + h — w) belongs to J(E(b))
whenever F(z) belongs to JS(E(b)). Since JC(E(b)) is periodic of period #,
every element G(z) of J(E(b)) is of the form G(z) = F(z + k) for some
F(z) in J(E(b)). It follows that [G(2)E(a, w) — E(a, z + h)G(w — h)]/
(z + h — w) belongs to J(E(b)) whenever G(z) belongs to JE(E(D)).
Equivalently, [F(z)E(a, w + h) — E(a, z -+ h)F(w)]/(z — w) belongs to
Je(E(b)) whenever F(z) belongs to JC(E(b)). By Theorem 25,

[ (1 + @)1 B, ¢ + BEW, 2t < oo.

By Theorem 26, [F(z)E(a, w -+ h) — E(a, z + h)F(w)]/(z — w) belongs to
Je(E(a)) whenever F(z) belongs to JE(E(a)). Since G*(z) belongs to J@( (a))
whenever G(z) belongs to Je(E(a)), [F(2)E*(a, w + h) — E*(a, z + h)F(w)]/
(z — w) belongs to JC(E(a)) whenever F(z) belongs to J¢(E(a)). By hneamty
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we obtain
[E(a, z + WE*(a, w 4 h) — E*(a, z -+ h)E(a, w + k)]/(z — w)

in J¢(E(a)) for every complex number w. Therefore F(z + %) belongs to
JC(E(a)) whenever F(z) is a finite linear combination of functions K(a, , z).
Since such linear combinations are dense in JE(E(a)), since the transformation
F(z) = F(z -+ k) is isometric in JC(E(b)), and since JE(E(a)) is a closed
subspace of JE(E(b)), F(z + k) belongs to #(£(a)) whenever F(z) belongs to
JC(E(a)). A similar argument will show that F(z — %) belongs to J¢(E(a))
whenever F(z) belongs to J¢(£(a)). The theorem follows since JC(E(a)) is
contained isometrically in J8(E(b)) and since JE(E(b)) is periodic of period A.

PROBLEM 186. Let u(x) be a nondecreasing function of real x and let
h > 0 be a given number such that u(b + &) — u(a + &) = p(b) — p(a)
for all ¢ and 4. Let JE(E) be a given space such that E(z) has no real zeros
and JC(E) is contained isometrically in L2(u). Show that the space J(E) is
periodic of period 4 if E(z) is of bounded type in the upper half-plane.

PROBLEM 187. Let u(x) be a nondecreasing function of real x and let
k> 0 be a given number such that u(b + &) — u(a + £) = u(b) — u(a)
for all a and b. Let J¢(E(a)) and JE(E(b)) be given spaces such that E(a, z)
and E(b, z) have no real zeros, JC(£(a)) is contained isometrically in JE(£(b)),
and JE(E(b)) is contained isometrically in L2?(x). Show that JE(E(b)) is
periodic of period 4 if J(E(a)) is periodic of period .

PROBLEM 188. Let J¢(E(b)) be a one-dimensional space which is periodic
of period A. Let

(A(b, 2), B(b, 2)) = (4(a, 2), B(a, z))M(a, b, z)

where J¢(E(a)) and JC(M(a, b)) exist. Show that J(E(a)) is periodic of
period A.

PROBLEM 189. Let JC(E(a)) and JC(E(b)) be given spaces such that
E(a, z) and E(b, z) have no real zeros, J¢(E(a)) is contained isometrically
in JC(E(b)), and the orthogonal complement of JC(E(a)) in JE(£(b)) is one-
dimensional. If JE(E(b)) is periodic of period 4 and if S(z) is an element of
JC(E(b)) which spans the orthogonal complement of JC(E(a)), show that
either §(z — &) = 8(z) or S(z — h) = —8(z).

PROBLEM 190. Let J€(E(a)) and JC(E(b)) be given spaces such that
E(a, z) and E(b, z) have no real zeros, JC(£(a)) is contained isometrically
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in Je(E(b)), and the orthogonal complement of J¢(£(a)) in JE(E(b)) is one-
dimensional. Assume that JE(E(b)), and hence J(E(a)), is periodic of
period k. Let P(a) and P(b) be the 2 X 2-matrices having real entries and
determinant 1 such that

(A(b, z — k), B(b, z — k)) = (4(b, 2), B(b, 2))P(b),
(A(a, z — h), B(a, z — h)) = (A(a, z), B(a, z))P(a).

Show that 1 or —1 is an eigenvalue of P(a) and of P(8). Show that P(a) = 1
or P(a) = —1 and that P(b) # 1 and P(b) 5 —1.

PROBLEM 19!. Let J¢(E(a)) and JC(E(b)) be given spaces such that
JC(E(a)) is contained isometrically in Je(E(b)), E(a, z) and E(b, z) have no
real zeros, and the orthogonal complement of JC(E(a)) in JC(E(b)) is one-
dimensional. If JE(E(b)) is periodic of period %, show that the domain of
multiplication by z in J(E(a)) is dense in JC(E(a)).

PROBLEM 192. Let J8(E(a)) and JC(E(c)) be given spaces such that
Je(E(a)) is contained isometrically in JC(E(c)), E(a, z) and E(c, z) have no
real zeros, and the orthogonal complement of JC(E(a)) in JC(E(c)) is one-
dimensional. Let JE(E(b)) be a space such that

(A(b, z), B(b, z)) = (A(a, z), Bla, z))M(a, b, z),
(A(c, 2), Ble, 2)) = (A(b, z), B(b, 2))M(b, ¢, 2)

for some spaces Je(M(a, b)) and J&(M(b, ¢)). Show that JE(E(b)) is periodic
of period £ if Je(E(c)) is periodic of period h.

PROBLEM 193. Let J8(E(a)) and JC(E(b)) be given spaces such that
E(a, z) and E(b, z) have no real zeros, JE(E(a)) is contained isometrically
in Je(E(b)), and the orthogonal complement of JC(E(a)) in JC(E(b)) is one-
dimensional. Assume that J&(E(a)) is periodic of period £ and that it is
contained isometrically in L2(u) where u(x) is a nondecreasing function of
real x such that u(b + k) — ula + k) = wu(b) — w(a) for all real numbers
e and b. Assume that there exists a number # > 0 and a function W(b, z),
analytic and bounded by 1 in the upper half-plane, such that

E(b, 2) + E*(b, )W (b, 2) rw E(b, 0)[dus)
CEG, z) — E*(b, Wb, 2) @ — %2 | o

for y > 0. Show that Je(E(b)) is periodic of period 4.

PROBLEM 194. Let P and Q be 2 X 2-matrices such that P has deter-
minant 1, Q has real entries, @ >0 and @ # 0. If P commutes with Q1
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show that P is a linear combination of @7 and the identity matrix. If P has
real entries, show that [spur P| < 2.

49. STRUCTURE OF PERIODIC SPACES
The solution of the structure problem is known for periodic spaces.

THEOREM 49. In Theorem 40 assume that JS(E) is periodic of period #,
k>0, and that u(b -+ &) — p(a + k) = p(b) — wla) for all @ and b. Let
7(t) be the largest nondecreasing function of ¢ such that m(t) — Ir () is
nondecreasing. Then 7(¢) is bounded below. Choose the arbitrary constant
in 7(t) so that lim sin [A7(¢)] = 0 as ¢  s_. Then «(#), §(¢), and y(¢) are
linear functions of 7(¢) in any interval in which sin [A7(¢)] # 0, and they are
constant in any interval of regular points in which sin [A7(¢)] = 0. If bis a
regular point and if @ <C b, then « is a regular point.

Proof of Theorem 49. By Theorem 48, JC(E(a)) is periodic of period & when
a is regular and a < ¢. By Problem 187, J8(E(a)) is periodic of period A
when g is regular and a > ¢. By Problems 188, 192, and 193, J(E(a)) is
periodic of period % for all a. By the proof of Theorem 48, there exists a
2 X 2-matrix

p(a) q(d))
r(a)  s(a)

having real entries and determinant 1 such that

Pa) = (

(A(a, z — k), B(a, z — h)) = (A(a, z), B(a, z))P(a).
If < b we have also

. (A(b, z — k), B(b, z — h)) = (A(b, 2), B(b, 2))P(b)

(A(b, z), B(b, z)) = (A(a, z), Bla, z))M(a, b, z).
It follows that
(4(a, z), B(a, z))P(a)M(a, b, z — h) = (A(a, 2), B(a, z))M(a, b, z) P(b).

By Problem 100,
PlayM(a, b, z — k) = M(a, b, z)P(b).
When z = 0 we obtain

P(b) = P(a)M(a, b, —h).
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Therefore the entries of P(¢) are continuous functions of . Since
M(a, b, 2)] — I =z f” Ma, t, z)dm({)
when a < b, we obtain
P(b) — Pla) = h fb P(t)dm(t)]
when z = —h. We also have
M(a, b,z — I — I = (z — k) f” Ma, t, z — h)dm(t).

Multiplying on the left by P(a), we obtain .

M(a, b, 2)P(6)] — P(a)l = (z — k) f; Ma, ¢, z)P(t)dm(t).
We now use the identity

M(a, b, 2)IM(a, b, w) — I = (z — @) j: M{a, t, z)dm(t) M(a, t, w)

when w = h. Since P(a) = M(a, b, k)P(b) where P(b)IP(b) =1 and
P(a)IP(a) = I, it can be written

M(a, b, 2)P(b) — P(a) = —(z — k) f; Ma, t, 2)dm(t)IP(t).

Comparing with the previous identity we obtain

[ M(a, 1, 2)P(t)dm() 1 = [ a1, 2)dm() 1P().

a

When z = 0 the equation reads

[ P(eyam()1 = [ am(yrp(s),

13

If m(t) is chosen as in the proof of Theorem 40 so that «(¢) + y({) = ¢,
then 7(¢) and the entries of m(t) are absolutely continuous functions of ¢ and
m'(t) exists for almost all £. Since o(¢) + y'(t) = 1, m'(f) # 0 whenever
it exists. When m'(¢) exists, P'(#) and 7'(f) exist, P({) commutes with
m’(t)1, and

P(t) = hP(t)m'(t)1.

By Problem 194, |p(t) + s(t)] < 2 whenever m'(t) exists. By continuity the
inequality holds for all ¢. Since p(¢) and s(t) are continuous functions of ¢,
we can write p(t) - s(t) = 2 cos 8(¢) for some continuous function 6(¢), and
we can choose it so that sin 6(¢) has a given sign in any connected component
of the set on which sin 8(¢) # 0. By Problem 194, P(?) is a linear combina-
tion of m’(¢)I and the identity matrix when m'(#) exists. Since m’(t)[ has zero
trace and o' (f) + p'(¢) =1,

P(1) — cos (1) = [r(t) — q(B)]m' ()]
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whenever m'(t) exists. Since the entries of m(t) are absolutely continuous
functions of ¢, m’(¢) exists whenever 7(¢) = ¢(¢). Since P(¢) has determinant 1,
7(t) # q(t) whenever P(t) £ 1 and P(t) £ —1. So m(¢) is differentiable on
the set where P(t) = 1 and P({) % —1, and m’'(¢) is continuous on this set,
Since P(1) is differentiable on this set, m’(¢) is also differentiable on this set.
Since P(t) has determinant 1,

() — ¢(1)]* = sin* 6())

whenever m'(t) exists. We choose 0(¢) so that
T (O)[r(t) — q(t)] = sin 6(2).

m'(t)Im' (1) = I'(1)2,

Since

we obtain the equation
P'(t) = hm'(t)I cos O0(t) — hsin 0(8)7'(¢).
Since the trace of m'(¢)1 is zero,
) 4 s'(t) = —2hsin ()7 (2).

Since p(t) + s(t) = 2 cos 0(¢) and since p(¢) and s(¢) are differentiable on the
set where sin 0(t) # 0, 6(¢) is differentiable on this set and 0'(¢) == A7’ ().
It follows that

0(b) — 0(a) = hr(b) — hr(a)

if sin 0(t) # 0 in (a4, b). In such an interval 7'(¢) > 0,

P(t) = cos 0(t) + Z’—m Isin 0(2)
T

dp d

— == —/sin 0(¢) + R Icos 0(t).

dr dr
It follows that dm/dr is constant in (a, ) and that the entries of m(t) are
linear functions of 7(¢) in the interval. Note that P(a) = 1 or P(a) = —1 if
sin 0(a) = 0.

If (a, b) is an interval in which sin 0(¢) = 0, P(¢) # 1, and P(¢) % —1,
then ¢(t) + 7(t) and 7'(¢) = O in the interval. Since

[r(t) — q(O)][P(t) — cos O()] = A[P(t) — cos O(t)] cos O(¢)

where cos 0(t) = 1 or cos 6(t) = —1 in (a, b), the entries of P(t) — cos 6(¢)
are solutions of the same first order differential equation. Since r(¢) — ¢(£)
is continuous and nonzero in (a, b), any two solutions of the equation are
linearly dependent. It follows that any two entries of P(¢) — cos 0(¢) are
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linearly dependent functions of £ in (a, b). This implies that any two entries
of m'(t) are linearly dependent functions of ¢ in (a, 6). Since a(t) + p(t) = ¢,
the entries of m() are linear functions of ¢ in (a, b). Since 7'(¢f) = 0 in the
interval,

[a(b) — a(@)][y(b) — y(a)] = [B(0) — Bla)]%

and the interval contains only singular points,

If ¢ is a point such thatsin 0(a) = 0 and if a is not the left end point of an
interval (g, b) of singular points, then 7(t) > 7(a) when ¢ > a. It follows
that there exists a sequence {(a,, b,)} of intervals such that sin 6(¢) 7 0 in
each interval, sin 6(a,) = O for every n, and a = lim @, We have seen that
P(a,) = | or P(a,) = —1 for every n. Since P(t) is a continuous function
of t, P(a) = 1 or P(a) = —1. By Problem 190 we know that P(a) =1 or
P(a) = —1 if a is a regular point and if the interval (a, b) contains only
singular points with respect to m(t). Therefore P(a) = 1 or P(a) = —1 ifa
is any regular point such that sin 0(a) = 0. By Problem 190, P(b) # 1 and
P(b) # —1 if (a, b) is an interval of singular points, and also sin 6(6) =0
since P(b) has determinant 1 and has 1 or —1 as an eigenvalue. From this
we see that b is not a regular point with respect to m(¢). By the arbitrariness
of b there are no regular points to the right of any singular point.

Let @(t, x) be the phase function associated with E(t, z) which is zero
at the origin. If P(t) = 1, then E(,z — k) = E(t, z) and ¢@(i, 7)
0 modulo 27. If P(t) = —1, then E(f, z — h) = —E(t, z) and ¢(t, m)
7 modulo 27. Since ¢(t, ) increases as ¢ increases, p(b, m) = @(a, m) + 7
if « < b and P(a) and P(b) are multiples of the identity matrix. Since
@(t, ) is nonnegative for all ¢, there are at most ¢(c, ) /7 points ¢ such that

t <c¢and P(t) =1 or P(t) = —1. It follows that there are only a finite
number of regular points ¢ such that ¢ < ¢ and sin ¢(t, ¢) = 0 since P(¢) = 1
or P({) = —1 at such points. Since 6(t) — hr(t) is continuous and is

constant in each interval where sin 6(¢) % 0, it is constant on the set of
regular points. Since 6(¢) and 7(t) are constant on the set of singular points,
0(t) — h7(t) is a constant. We choose the arbitrary constant in 7(f) so that
0(t) = hr(t). Since 6(¢) is a nondecreasing, continuous function and
since 0(t) = 0 modulo 7 for only a finite number of regular points ¢ <¢, 0(z),
and hence 7(¢), has a lower bound. By construction there is no interval of
regular points in which 7(t) is constant. Since 7(¢) has a lower bound and
since m(t) is a linear function of 7(t) in each interval in which sin () # 0,
y(t) has a lower bound. By Problem 171, lim m(¢) exists as £ s_and

(A(t, z), B(t, 2)) == (A(s_, z), B(s_, 2)) M(s_, t, z)

where J(M(s_, 1)) exists and M(s_, {, z) = lim M(a, t,2) as a N s_. It
follows that P(s_) = lim P(¢) exists as £ s_ and that

(A(s_, z — k), B(s_, z — h)) = (A(s_, 2), B(s_, 2))P(s_).
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Since B(s_, z) = 0 identically, P(s_) has a real eigenvalue. Since P(s_) has
determinant 1 and since the absolute value of its trace is at most 2, its trace
is 2 or —2. It follows that sin 0(s_) = lim sin 6(¢) = 0 as ¢ \ 5_.

PROBLEM 195. Let JE(E) be a given space which is periodic of period 4,
h > 0, and let P be the 2 x 2-matrix with real entries and determinant |
such that

(A(z — 1), B(z — k) = (A(2), B(2))P.

Show that the absolute value of the trace of P is at most 2.

PROBLEM 196. Let JC(E) be a given space which is periodic of period A,
h > 0. Show that there exists an entire function $(z) which is real for real z
such that [F(z)S(w) — S(2)F(w)]/(z — w) belongs to J(E) whenever F(z)
belongs to JC(E) and such that E(z)/S(z) is entire. Show that either
S(z — k) = 8(z) or S(z — h) = —§(2).

PROBLEM 197. Let JE(E) be a given space which is periodic of period #,
# > 0. Show that the domain of multiplication by z in Je(E) is dense in
J(E) if JC(E) is contained isometrically in L2( i) where u(x) is a nondecreas-
ing function of real x such that u(b + k) — p(a + k) = u(d) — u(a) for all
real numbers @ and 4.

«(t) B(1)
HONN0)

valued function of ¢ > 0 whose entries are linear, real valued functions of z.
If «/'(8)2'(t) — B'(1)? = 1, show that

PROBLEM 198. Let m(i) :( ) be a nondecreasing, matrix

M(t, z) = cos (tz) — m'(t)Isin (tz)

is the unique matrix valued function of ¢ such that M(t, w) is a continuous
function of ¢t > 0 for every w and

M(a, )] — I = w fo M(t, w)dm(t)

for @ = 0. Show that a space J&(E(a)) exists for every a > 0, E(a, z) =
A(a, z) — iB(a, z), and that it is periodic of period % for every £ > 0. Show
that

M(a, z — k) = M(a, z)M(a, —h).

PROBLEM 199. Let J¢(Z) be a given space such that E(z) is of bounded
type in the upper half-plane and has no real zeros. If Je(E) is periodic of
period £ for every h > 0, if the domain of multiplication by z is dense in
J(E), and if E(0) = 1, show that E(z) = E(a, z) for some choice of m(t) as
in Problem 198 and some number 4 > 0,
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PROBLEM 200. Let J&(E) be a given space such that E(z) is of bounded
type in the upper half-plane and has no real zeros. Let 7 be the mean type
of E(z) in the upper half-plane. Assume that the domain of multiplication
by z in J(E) is dense in JE(E). If JC(E) is periodic of period £ for some
number ki, 0 < & < m/7, show that JE(E) is periodic of period k for every
number £ > 0.

aft) B
TORRI0
matrix valued function of ¢ = 0 whose entries are continuous, real valued
functions of z. Assume that the entries of m(t) are linear in each interval
wr — < ht <nmon=1,2,3 -+, and that &' ()y'(t) — B'()2 = 1 when
ht = nm, n=0,1,2, -+ . Let M(¢, w) be the unique, continuous, matrix
valued function of ¢ for every w such that

PROBLEM 201. Let/ > Oandletm(t) = ( ) be a nondecreasing,

M(a, )] — I =w fo M{(t, w)dm(t)
for a > 0. Show that
(A(a, z — k), B(a, z — h)) = (A(a, z), B(a, 2))P(a)
where P(a) = (—1)"ifha =nm,n=1,2,3,---,and
P(a) = cos a + m'(a)Isina

otherwise.

PROBLEM 202. Let J&(E) be a given space which is periodic of period £,
k> 0. If the domain of multiplication by z is dense in JC(E) and if E(z) has
no real zeros, show that there exists a nondecreasing function u(x) of real x
such that u(b + k) — u(a + h) = u(b) — w(a) for all real numbers a and b
and such that Je(E) is contained isometrically in L2(u).

PROBLEM 203. Let J8(E) be a given space which is periodic of period 4,
k > 0. If the domain of multiplication by z is dense in JC(£), show that
cos 8 sin 9)

—sin 8 cos §

(A= — 1), Bz — 1)@ = (A(2), BQ(

for some real number 0 and for some 2 X 2-matrix @ having real entries
and determinant 1.

PROBLEM 204. Let J8(E) be a given space which is periodic of period 4,
k > 0, and let p(x) be a phase function associated with J&(E). Assume that
cos @ sin 9)

—sin @ cos 0

(A(z = 1), B(z — ) = (4(2), B(Z))(
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for some real number §. Show that ¢(b + &) — @(a + 4) = @(b) — @(a)

for all real numbers a and b.

PROBLEM 205. Let 2 > 0 and let u(x) be a nondecreasing function of
real x such that u(b + h) — u(a + k) = p(b) — p(a) for all real numbers
a and b. Assume that p(x) has a finite number r of points of increase in each
interval of length 4. Show that there exists a space JC(£) contained iso-
metrically in L2(y) such that E(z) is of bounded type in the upper half-plane
and has no real zeros and such that JC(E) fills L2(u). Show that E(z) can
be chosen so that E(z — &) = E(z) if r is even and so that E(z — k) =
—E(z) if r is odd. Show that the mean type of £(z) in the upper half-plane
is mrfh.

PROBLEM 206. Let/ > 0 and let u(x) be a nondecreasing function of real
x such that u(b -+ k) — u(a + k) = p(b) — p(a) for all real numbers
a and b. Assume that u(x) has an infinite number of points of increase in
each interval of length A. Show that for each @ > 0 there exists a space
JE(E(a)) contained isometrically in L2(u) such that E(a, z) is of bounded
type in the upper half-plane and has no real zeros, and such that the mean
type of E(a, z) in the half-plane is a.

PROBLEM 207. A space JC(E) is said to be symmetric about a point £ if
F(2h — z) belongs to the space whenever F(z) belongs to the space and if the
identity

(F(2h — 1), G(t)) = (F(1), G2k — 1))

holds whenever F(z) and G(z) belong to the space. Note that G(24 — 2)
belongs to the space whenever G(z) belongs to the space since it is obtained
by conjugating G*{2k — z). If a space JC(E) is symmetric about a point £,
show that

(4(2h — 2), B(2h — 2)) = (A(z), B(2))P
for some matrix P = (f Z

that Pis uniquely determined by E(z). Show that the entries of P are real if
h is a real number.

) which has trace 0 and determinant —1. Show

PROBLEM 208. Let f(z) be a function which is analytic and of bounded
type in the upper half-plane. If f(z) has no zeros in the half-plane and has
zero mean type, show that

lim [f(k -+ D)[f)| =1

Y=+

for every complex number .
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PROBLEM 209. Let JC(E(a)) and JC(E(b)) be given spaces such that
Je(E(a)) is contained isometrically in JC(E(b)) and E(a, z)/E(b, z) has no
real zeros. If Je(E(b)) is symmetric about a point &, show that JE(E(a)) is
symmetric about the point A.

PROBLEM 210. Let J8(£(a)) and J(E(b)) be given spaces such that
Je(E(a)) is contained isometrically in JE(E(b)), E(a, z)/E(b, z) has no real
zeros, and the orthogonal complement of JC(E(a)) in JC(E(b)) is one-
dimensional. IfJe(E(b)) is symmetric about a point & and if §(z) is an element
of J8(E(b)) which spans the orthogonal complement of J¢(£(a)), show that A
is real and that either S(2k — z) = S(z) or S(2k — z) = —S5(2).

PROBLEM 211. Let J6(E(a)), JE(E()), and JC(M(a, b)) be spaces such that
(A(b, 2), B(b, 2)) = (A(a, z), B(a, 2)}M(a, b, z).

If Je(E(b)) is symmetric about a point %, show that J¢(E(a)) is symmetric
about the point A.

aft) p(t)
B ()
valued function of ¢ whose entries are continuous, real valued functions of
in an interval [q,¢]. Let M(a, t, w) be the unique, continuous, matrix
valued function of ¢ in [a, ¢] such that

PROBLEM 212, Let m(?) :( ) be a nondecreasing, matrix

M(a, b, w)I — I =w [* M(a, 1, w)dn()
a
fora < b < ¢ Assume that J8(E(a)) and JE(E(c)) are given spaces such that
(A(c, 2), B(c, 2)) == (A(a, ), Bla, z))M(a, ¢, z)

and that J8(E(¢)) is symmetric about a point 4. Let JC(E(b)) be the space
defined by E(b, z) = A(b, z) — iB(b, z) where

(A(b, z), B(b, 2)) = (4{a, z), B(a, z))M(a, b, z)
a < b << ¢. Show that there exists a unique matrix

f40) Q(b))

Py = (7(b) s(b)

having trace 0 and determinant —1 such that

(A(b, 2k — z), B(b, 2h — 2)) = (A(b, 2), B(b, 2))P(b).
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Show that the entries of P(4) are continuous functions of 4 and that
P(b)I — P(a)] = 24 fb P(tydm(t),

f” P(tydm()] = — fb dm () IP(2)

fora <b <e.

PROBLEM 213. Show that the Paley-Wiener spaces are symmetric about
every point £ in the complex plane.

PROBLEM 214. A space J¢(E) is said to be periodic of period 4, £ a complex
number, if F(z — k) and F(z + k) belong to the space whenever F(z)
belongs to the space and if the identity

(F(t — k), G(t)) = (F(1), G(t + h))

holds for all elements F(z) and G(z) of the space. Show that a space JC(E)
is periodic of period 24 if it is symmetric about the point £ and about the
origin.

PROBLEM 215, If a space JE(E) is periodic of period %, show that
(A(z — ), B(z — 1)) = (A(2), B(z))P
b g

) having determinant 1.
7o

for some matrix P = (

PROBLEM 216. Let J8(E(a)) and J(E(b)) be given spaces such that
JE(E(a)) is contained isometrically in JS(E(b)) and E(a, z)/E(b, z) has no
real zeros. If JE(E(b)) is periodic of period %, show that JE(Z(a)) is periodic
of period £.

PROBLEM 2I17. Let J(E(a)) and JC(E(b)) be given spaces such that
JE(E(a)) is contained isometrically in JC(E(8)), E(a, z)[E(b, z) has no real
zeros, and the orthogonal complement of #(E(a)) in JC(E(b)) is one-
dimensional. Let §(z) be an element of J¢(E(b)) which spans the orthogonal
complement of JC(E(a)). If JC(E(d)) is periodic of period %, show that % is
real and that either §(z - &) = S(z) or S(z — k) = —8(z).

PROBLEM 218. Let JC(E(a)), JE(E(b)), and J(M(a, b)) be given spaces
such that
(A(b, z), B(b, z)) = (A(a, 2}, Bla, 2))M(a, b, z).

Show that JC(E(a)) is periodic of period 4 if JE(E(b)) is periodic of period .



Th 49 STRUCTURE OF PERIODIC SPACES . 183

PROBLEM 219. Show that a space JE(E) which is periodic of period % is
also periodic of period & and of period —#.

PROBLEM 220. Show that a space J¢(£) which is periodic of period A and
of period % is periodic of period & + £.

PROBLEM 221. Let J8(£) be a given space such that F(z -+ 7) belongs to
the space whenever F(z) belongs to the space. Show that E(z) = S(z)Ey(z)
where S(z) is an entire function which is real for real z and periodic of
period 2i, and where E(z) is an entire function of Pélya class which has no
real zeros. )

a(t) B
OREI0)
valued function of { whose entries are continuous, real valued functions of ¢
defined in an interval [a, ¢]. For each complex number w, let M(a, ¢, w) be
the unique, continuous, matrix valued function of ¢ in [a, ¢} such that

PROBLEM 222, Let m(i) :( ) be a nondecreasing, matrix

M(a, b, w)] — I = w fl’ M(a, t, w)dm(t)
fora < b < ¢ Let JC(E(a)) and JE(£(c)) be given spaces such that
(A(c, 2), Blc, 2)) = (A(a, z), B(a, z))M(a, ¢, z).

For each number b,a < b < ¢, let C(E(b)) be the space defined by E(b, z) =
A(b, z) — iB(b, 2) and

(4(b, z), B(b, z)) = (A(a, z), B(a, z))M(a, b, z).
If JE(E(c)) is periodic of period %, show that there exists a unique matrix

) — (ﬁ(b) 9(5))
r(6) ()

with determinant | such that
(A(b, z — h), B(b, z — h)) = (A(b, z), B(b, z))P(b).

Show that the entries of P(5) are continuous functions of 5 and that

f” P(t)dm(t)] = f” dm(1) IP(2),

P(b) — Pla) = h f " P(t)dm(t)I
forae <b <ec. ‘
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PROBLEM 223. Assume that 4 is not real in Problem 222 and that JC(E(b))
is not one-dimensional. Let 7(¢) be the largest nondecreasing function of ¢
such that m(¢) — iI7(¢) is nondecreasing. Show that the entries of m(t) are
linear functions of =(¢) in (a, b).

PROBLEM 224. Let J¢(E) be a given space which is periodic of period £
where £ is not real. Show that there exists an entire function §(z), which is
real for real z and has no zeros, such that [F(z)S(w) — S(z)F(w)]/(z — w)
belongs to Je(E) whenever F(z) belongs to J¢(E). Show that $(z — &) =
S(z) or S(z — h) = —S8(2). If Ey(z) = E(z)[S(z), show that a space JC(E;)
exists, that F(z) — S(z)F(z) is an isometric transformation of J¢(E;) onto
Je(E), that Je(E,) is periodic of period &, and E;(z) is of bounded type in the
upper half-plane.

PROBLEM 225. Let J8(E) be a given space which is periodic for a nonreal
period. If E(z) is of bounded type in the upper half-plane, show that JC(E)
is periodic of period % for every complex number A.

50. STRUCTURE OF HOMOGENEOUS
SPACES

Paley-Wiener spaces have another special property which enters also in
the theory of the Hankel transformation. A space J¢(E) is said to be homo-
geneous of order », v real, if a¥**F(az) belongs to the space whenever F(z)
belongs to the space and if it always has the same norm as F(z), 0 < a < l.
Paley-Wiener spaces are homogeneous spaces of order —§. We now deter-
mine the structure of the most general homogeneous space. If a space JC(E)
is homogeneous of order ¥ and if E(0) = 0, then a space J(E;) exists,
E,(z) = E(z)/z, it is homogeneous of order 1 + », and F(z) — zF(z) is an
isometric transformation of Jo(E;) onto JE(E). It is therefore sufficient to
study homogeneous spaces such that E(0) # 0.

THEOREM 50. Let J&(E) be a given space which is homogeneous of order ».
If E(0) # 0 and if J(E) contains a function which is not a constant, then
y > —1. There exists a family {J&(E(a))} of spaces, a > 0, a nondecreasing,
matrix valued function

and a nondecreasing function u(x) with the following properties:
(1) J(E) is equal isometrically to JC(E(1)).
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(2) E(t, w) is a continuous function of ¢ for every complex number w, and
(A(b, ), B(s, w))] — (A(a, w), Bla, )T = w [ (A(t, w), Bt, w))am(s)

whenever 0 < a < b < oo.
(3) JC(E(a)) is contained isometrically in L*(u) for every a > 0.
(4) JE(E(a)) is contained in JE(E(b)) when a < b.
(5) The intersection of the spaces J¢(£(a)) contains no nonzero element.
(6) The union of the spaces JE(E(a)) is dense in L2(u).
(7) When ¢ > 0,

a(t) = a()*2, - ) = (L), () =y
(8) When x >0,

N(x) = M(l)x2v+2 and Iu(—x) — ,LL(—I)xz"+2.

Proof of Theorem 50. We first show that £(z) has no real zeros. Since we
assume that E(0) # 0, it is sufficient to show that E(%) = 0 when A 5 0.
Argue by contradiction, assuming that E(k) = 0. Then £ is a zero of every
element of J8(E). Since a'*"F(az) belongs to JC(E) whenever F(z) belongs to
Je(E), 0 < a << 1, it follows that every element of JC(£) vanishes at the
points ah, 0 < a << 1. Since the elements of JC(E) are entire functions, JC(E)
contains no nonzero element, in contradiction of Theorem 19. We can
therefore conclude that (z) has no real zeros.

If a > 0 let AG(a) be the set of entire functions G(z) of the form a'*"F(az)
for some corresponding element F(z) of JE(E). Define a norm in A(a) so as
to make the transformation F(z) — a**'F(az) an isometry of J¢(E) into
Mo(a). It is easily verified that JM(a) is a Hilbert space of entire functions
which satisfies the axioms (H1), (H2), and (H3) and which contains a
nonzero element. By Theorem 23, M(a) is equal isometrically to a space
JE(E(a)). Since JC(E) is homogeneous of order », J8(£(a)) is contained iso-
metrically in JE(E(b)) whena < b. Since E(z) hasno real zeros, F(z)/(z — w)
belongs to J¢(E) whenever F(z) belongs to (E) and F(w) = 0. It follows
that F(z)/(z — w) belongs to (E(a)) whenever F(z) belongs to J(E(a)) and
F(w) = 0. This condition implies that E(a, z) has no real zeros. By Theorem
33 there exists a space JC(M(a, b)) such that

(A(b, z), B(b, 2)) = (A(a, z), B(a, z))M(a, b, z)
when a < b. We can clearly choose the spaces J&(E(a)) so that E(a, z) has

value 1 at the origin for every ¢ and so that the value of M(a, b, z) at the
origin is the identity matrix when a < &.
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Since a'*'K(aw, z) belongs to J¢(E) for every complex number g,
a®+2K (aw, az) belongs to JC(E(a)) for every complex number w. If G(z) =
atF(az) is in J8(E(a)), then

(G(t), a®K(aw, at))y = (F(t), aK(aw, 1)) = a""*F(aw) = G(w).
By the arbitrariness of G(z), we can conclude that
K(a, w, z) = a®**K(aw, az).

Since K(a, w, w) is a nondecreasing function of ¢ for every w, » = —1.

We argue by contradiction to show that » > —1. If » = —1, then
K(a, 0, 0) does not depend on a. Since K(a, 0, z) is the projection of K(4, 0, z)
in J8(E(a)) when a < b and since

1K (a, 0, £)[|* = K(a, 0, 0) = K(b,0,0) = |[K(5, 0, ))]|*,

we have K(a, 0, z) = K(b, 0, z). Thisimpliesthat B(a, z) is independent of 4.
Since B(a, z) clearly does not belong to J¢(E(a)), it follows from Theorem 22
that JC(E(a)) fills JC(E(b)) when a < b. Tt follows that K(aw, az) = K(w, z)
and that K(w, z) = K(0, 0} is independent of z and w, which contradicts
the hypothesis that JC(E) contains a nonconstant element. We can therefore
conclude that » > —1.

The identity K(a, w, z) = a?**'K(l, aw, az) implies that

(A(a, z), B(a, 2)) = a*¥(A(1, az), B(l, az))P(a)
p(a) q(a)

for a unique matrix P(a) = ( @ s(a)
r(a) s(a

minant 1. Since E(a, z) and E(l, z) have value 1 at the origin, p(a) =
a—}, q(a) = 0, and s(a) = a’*%. It follows that

b (A(1, bz), B(1, b2))P(b) = a"+}(A(1, az), B(1, az))P(a)M(a, b, z)

) having real entries and deter-

when a < b. This identity can be written
(A(1, z), B(1, z)) = (A(a[b, z), B(alb, z))P(alb)~*P(a)M(a, b, z[b)P(b)~*. '

By the uniqueness property of the linking matrix M(a, b, z), Problem 100,
we can conclude that

M(alb, 1, z) = P(alb) 7 P(a)M(a, b, z[b)P(b)2.
When z = 0 the identity reads P(a/b) = P(a)P(b)~L. This implies that
r(afb) = r(a)b"+} — r(b)a*+t
when a < b. The solution of the equation is

@) = Ha) (@t — )
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where h{a) = h is a constant. So we have

ra= (1, )00 )

Since we can replace E(a, z) by E(a, z) — hB(a, z) without altering the
defining property of the original family of functions, we can suppose the
construction made in such a way that 2 = 0. In the notation of Theorem 40,

we have
M'(a, b, 0)] = m(b) — m(a)

_ (a(t) i (t))
m(t) ==
By (@
is a nondecreasing function of f. Since K(a, 0, 0) = ¢***'K(1, 0, 0), we can

choose «(¢) so that a(t) == **2(l). By comparing derivatives at the origin
in the identity for M(a, b, z), we obtain

m(alb)] — m(1)I = P(b)[m(a)] — m(b)I}P(b)~1b~1

where

when a < b. Since P(b) has real entries and determinant 1, the identity
IP(b)~1 = P(b)I holds and we can conclude that

bm(alb) — bm(1) = P(b)[m(a) — m(b)]P(b).
The identity implies that
[8(a) — B(6)]/(a — &) = [B(afb) — B(1)]/[(afb) — 1]
[y(a) — y(O)]/(a™® — b7) = [y(afb) — y(1)]/[(a/b)~> —

when a < b. Since () is a nondecreasing function of ¢, it follows that
[y(a) — y(b)]/(a=® — b~%) is a constant. Since m(¢) is nondecreasing,

(B(6) — p(@)]? < [a(b) — a(a)][y(8) — ¥(a)]

when a < b. Since «a(t) and p(t) are continuous functions of ¢, B(¢) is a
continuous function of ¢. It now follows that [f(a) — f(b)]/(a — &) is a
constant. We can therefore choose the arbitrary constants in §(¢) and ()
so that (7) holds, and (2) and (5) follow by the proof of Theorem 40. By
Theorem 42, there exists a nondecreasing function u(x) such that every
space JC(E(a)) is contained isometrically in L%(u). The union of the spaces
J(E(a)) is dense in L*(u) by Problem 163. If F(x) is an element of L3(p)
which belongs to the union of the spaces JC(E(a)) and if & > 0, then b1+ F(bx)
belongs to the union of the spaces J¢(E£(a)) and has the same norm as F(x).
Since the union of the spaces JC(£(a)) is dense in L%(u), 63F(bx) belongs
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to L2(u) whenever F(x) belongs to L2(u) and it always has the same norm
as F(x), b > 0. If F(x) = 1 for 0 < x < b and if F(x) = 0 otherwise, then
b F(bx) = b1+ for 0 < x < 1 and b"F(bx) = 0 otherwise. It follows
that

p(b—) — p(0+) = 62 [pu(l—) — p(0-+)].

By the arbitrariness of 5, u(x) is a continuous function of x > 0. By con.-
sidering the function F(x) =1 for —b < x < 0 and F(x) = 0 otherwise,
we obtain

p(O0—) — p(—b+) = B [(0—) — p(=14)]

for b > 0. This implies that u(x) is a continuous function of x < 0. By
considering the function F(x) = 1 for —b < x << b and F(x) = 0 otherwise,
we obtain

p(b) — p(—b) = ¥ [u(l) — p(—1)]

for b > 0. It follows that u(0-4) = u(0—). We can therefore choose u(x)
so that u(0+) = u(0) = u(0—) == 0 and the theorem follows.

PROBLEM 226. If E(z) = E(l, z) in Theorem 50, show that
B'(z) + (2v + DB(2)[z = «'(1)4(2) + f'(1)B(2),
—4'(z) = p'(NA(2) + »'(1)B(2).
Show that A(z) = % 4,z" and B(z) = X B,z" where 4, = 1, B, = 0, and
=+ DAy = (14, + ¥ (1)B,,
(n+ 20+ 2) By = o (D4, + (1B,

for every n.

PROBLEM 227. Let » > —1I be given and let «'(1), (1), ’(1) be real
numbers such that «’(1) > 0, (1) > 0, and §'(1)? < «'(1)9'(1). Let

at) = a()e*s, () = ), y() = p(1)i7*
where a(1), (1), ¥(1) are defined by
(1) = (2v + 2)a(l),  F() = p(L),  y'(1) = —2wy(l).

Let A(z) = X A,z" and B(z) = X B,z" be the formal power series whose
coefficients are defined inductively by 4, = 1, By == 0, and

—(n+ DA,y = (104, + ' (1)B,,
(n+ 2y + 2)B,yy = o' ()4, + §/(1)B,
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for every n. Show that these series converge in the complex plane, that 4(z)
and B(z) are entire functions which are real for real z, that a space JC(E)
exists, E(z) = A(z) — iB(z), and that JC(E) is homogeneous of order .

PROBLEM 228, If o'(1) =1, f(1) =0, 9'(1) =1 in Problem 227,

show that
3 (— 1G>
A(z) = ,;::0 nly + Dy +2) - (v+n)’
- $ (—1)y gz

n=on!(1}—|—1)(v+2)"-(v+n+l)'.

Show that E(z) = A(z) — iB(z) is of bounded type in the upper half-plane
and has mean type equal to 1 in the half-plane. Show that an entire function
F(z) belongs to JC(E) if, and only if, F(z) and F*(z} are of bounded type in
the upper half-plane, the mean types of F(z) and F*(z) are at most | in the
half-plane, and

f_*“’ IF()]2 ¢]2Hdt < oo.

PROBLEM 229. The Hankel transformation is defined in terms of the
Bessel function

@ ) (1 )v+2n
2

#=0 'F(l + v+ n)

If f(x) belongs to L%(0, o), its Hankel transform g(x) of order » is defined

formally by
f ST (¢ \/ at dt.

J,(x) =

Show that the integral exists as lim fo in the metric of L2(0, ) as a — co.

Show that the function x**+¥~%2* is its own Hankel transform of order . If
f(x) belongs to L2(0, co) and if g(x) is its Hankel transform of order », show
that

[ s = [ 16012

and that f(x) is the Hankel transform of g(x) of the same order.

5I. ANALYTIC WEIGHT FUNCTIONS

Many of the most familiar Hilbert spaces of entire functions are associated
with a weight function. By a weight function W(z) associated with J¢(E),
we mean a function analytic in the upper half-plane, continuous in the



190 SPECIAL SPAGES . Ch s

closed half-plane, and having no zeros in the closed half-plane, such that
0 ~+o0
[ 1@ B pae = [T (7@ W02

for every F(z) in J¢(E). A weight function is often convenient in characteriz.
ing the elements of a space JC(E).

THEOREM51. Let {J8(E(a))}, a > 0, be a given family of spaces associated
with a differentiable, nondecreasing, matrix valued function

(alt) B
’”“)‘“(ﬁa) y<t>)

so that E(a, z) is a continuous function of 4 for each fixed z and so that
(A(b, 2), B, )] — (Ala, 2), Bla, 2) = z [ (A4 2), B(t, 2))dm(t)

when 0 < ¢ < b < . Let 7(¢t) be the choice of a largest nondecreasing
function such that m(¢) — ilr(t) is nondecreasing. Assume that

v (08 g (p(8) ()}
0= (i )l o)
where p(1), q(t), r(t), s(t) are absolutely continuous, real valued functions of

t > 0 such that
p@)s(t) — q(@)r(t) =1,

(P'(t) Q'U)) _ (P(t) ‘](t)) (P'(t) —0'(1))
r S0 T\ s\ —p )
for almost all ¢, log '(¢) is an absolutely continuous function of £ > 0, and
p(t) and o(t) are absolutely continuous and of bounded variation on each
half-line (4, c0), a > 0. If

O(t, z) = [A(L 2)p(t) + B, 2)r()] — L4, 2)g(8) + B(t, 2)s(1)],

then
W(z) = lim O©(t, z) exp [ir(t)z]
t—o0
exists for y > 0. The limit function W(z) is a weight function associated

with JC(E(a)) for every a. A necessary and sufficient condition that an entire
function F(z) belong to JE(E(a)) is that

fj:j |B() | W(H)|2dt < oo,

that F(z)/W(z) and F*(z)[W(z) are of bounded type in the upper half-plane,
and that these ratios are of mean type at most 7(a) in the half-plane.
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Proof of Theorem 51. For each fixed z, ®(t, z) is an absolutely continuous
function of ¢ such that

D'(t, z) = D*(t, 2)p'(t) + iD(1, 2)0'(t) — iz®(¢, 2)7'(2)

for almost all £. It follows that ®(¢, z) exp [i7(¢) z] is an absolutely continuous
function of ¢ having derivative equal to

D* (1, z) exp [ir(t)2] p'(t) + iD(t, z) exp [iv(t) 2]’ (t)

almost everywhere. For each fixed a, ®(a, z) is an entire function of z and a
space J(P(a)) exists. Since we assume that E(a, z) has no real zeros,
®@(a, z) has no zeros on or above the real axis. Since ®*(q, z)/®D(a, z) is
bounded by one in the upper half-plane, the absolute value of the log-
arithmic derivative of ®(t, z) exp [i7(t)z] is no more than |p'(t)] + [o'(?)|
in the upper half-plane. It follows that

oo [ b0t + [ 0] = |50 o 0

< exp [ [ 1dple)] + [ 1do(0)]]

when ¢ < b and y > 0. Since we assume that p(¢) and o(t) are of bounded
variation in [a, 00),

W(z) = blim Db, z) exp [ir(b)z]

exists when » > 0 and
fexp [ [T 1dpo)l -+ [ 1do®)]] < 1®(a, 2) exp [ir(@) 2]/ W(2)]
<exp [[71dp)l + [ ldo(01].

Since convergence is uniform on any bounded set, the limit function W(z)
is analytic in the upper half-plane and continuous in the closed half-plane.
Since E(a, z) has no zeros on or above the real axis, W(z) has no zeros in the
closed half-plane. Since 3(®(a)) is equal isometrically to JC(E(a)) for every
a and since Je(E(a)) is contained isometrically in JE(E(b)) when a < b, the
identity
[r 1R @) B, e = [ 1) 10, o)t

holds for every F(z) in J8(E(a)) when a << b. The proof of Theorem 32 will
now show that the identity

52 1@ B, e = [T 1) w2

—0
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holds for all elements F(z) in the domain of multiplication by z in Je(E (a)).
Since there are no singular points with respect to m(¢), the domain of
multiplication by z is dense in JC(E(a)), and the same formula holds for
every element F(z) of J¢(E(a)). Since ®(a, z) exp [ir(a)z]/W(z) is bounded,
and bounded away from zero, in the upper half-plane, the space J(E(a))
is the set of entire functions F(z) such that

[ 1) wi e < oo,

such that F(z)/W(z) and F*(z)[/W(z) are of bounded type in the upper half-
plane, and such that these ratios are of mean type at most 7(a) in the half-
plane.

PROBLEM 230. In Theorem 51 let ¢(a, x) be a phase function associated
with @(a, 2) for every a > 0 so that ¢(a, 0) is independent of a. Show that

(8, %) — 7()x — g(a, %) + r(@)x] < ["1dp(t)] + [ |da(s)
for all real x when ¢ < 4. Show that
p(x) = lim [@(b, x) — 7(b)«]
exists for all real x and that e

9@ %) — r(@)x — p(e)| < [ ldp(0)] + [ 1do(s).

PROBLEM 23]l. In Theorem 5] assume that
lim [B(a, z)A(a, w) — Ala, z)B(a, w)] = 0.
aN 0
Define p(—t) = p(t), o(—t) = —~o(t), 7(—t) = —(t), and O(—t, z) =

@*(t, z) for t > 0. If f(t) belongs to L2(— o, + c0) and vanishes outside of
some finite interval (—a, a), show that its eigentransform F(z), defined by

2mF(2) = |77 f(O) (1, 2)V7 () di,
belongs to J8(E(a)) and that
o f:f |F(t)E(a, t)|2dt — f_*: ()2t

Show that every element of J8(E(a)) is of this form.

PROBLEM 232. In Problem 231 assume that p(t), o(f), and log 7'(¢) are
of bounded variation in a neighborhood of the origin. Let H be the trans-
formation defined by
Hif(t) > g(t) = —=' ()4 (1) ()]

+ip" ()7 ()Y (=) — o' (1) (1) (1)
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whenever £(t) belongs to L2(—co, 4 0), 7' (t)~¥f(t) is (equivalent to) an
absolutely continuous function, and g(¢) belongs to L*(— o, - 00). Let f(¢)
and g(t) be elements of L2(— co, -+ o0} which vanish outside of (—a, a), and
let F(z) and G(z) be their eigentransforms. Show that G(z) = zF(z) is a
necessary and sufficient condition that f'(¢) be in the domain of H and that

H:f(t) — g(1).

PROBLEM 233, Let J&(E) be a given space which is not one-dimensional,
and let £ be a given nonreal number. Show that there exists a space JC(E;)
such that

(1 — 2/B)[By(2)A(h) — Ay(2)B(R)] = B(2)A(h) — 4(=)B(h).

Show that the transformation F(z) — (1 — z[k)F(z) is an isometry of
Je(E,) onto the subspace of J¢(E) consisting of those functions which vanish
at the point /.

PROBLEM 234. Let {JC(E(¢))}, t > 0, be a given family of spaces associated
with a nondecreasing, matrix valued function

at) B (t))

By (@)

so that E(¢, z) is a continuous function of ¢ for every z and so that

m(t) = (

(A(b, 2), B(b, 2))I — (A(a, z), B{a, z))] = zf: (A(t, z), B(t, z))dm(t)

when 0 < a << b < 0. Let & be a given nonreal number, and let 4,(a, z)
and B, (a, z) be the unique entire functions which are real for real z such that

(1 — z[h)[By(a, 2)A(a, k) — Ay(a, 2)B(a, 1)]
= B(a, 2)A(a, k) — A(a, 2)B(a, )

when ¢ > 0. Let m;(t) be a matrix valued function of ¢ > 0 such that

my(b) — my(a) = [ P()dm(6)P(1)

when 0 < a < b << oo, where ’
|7] Re [iB(t, k) A(t, K)1P(£)
( Re [thA(¢, h) B(t, k)] Re [ihB(t, k) B(t, h)])

N —Re [iRA(t, A(t, k)] —Re [irB(2, WAt k)] '
Show that

(Al(b: Z), Bl(ba z))l - (Al(a: Z), Bl(‘l) Z))I =2z J.; (Al(t, z): Bl(ta Z))dml(t)
when 0 << a << b < c0.
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PROBLEM 235. Let {J(E,(a))} be the spaces defined inductively by
Ey(a, z) = exp (—iaz), a > 0, and
[ — izf(n + DIBoa(@ 2Dy in + ) — Appala, 2)Byla, in + $)]

= B,(a, 2)d ,(a, in + }) — A,(a, 2)By(a, in + %),
Show that J&(E (a)) is the set of entire functions F(z) such that F(z) and

F*(z) are of bounded type and of mean type at most 4 in the upper half-plane
and such that

["1FTE + v — it) [T} — it)%dt < oo,
Show that this integral is equal to
[72 1P B (a, )12t T( + )2 T(3)?

for every F(z) in J¢(EL,(a)). Show that F(z + i) + n[F(z 1) — F(—2z2)]/
(3 — iz) belongs to (£, (a)) whenever F(z) belongs to JC(E ,(a)). Show that
the identity
(F(t + ) 4 n[F(t + 1) — F(=0)]/(& — @), G())

— (F(t), G{t + i) + alG(t + i) — G(—1/(F — it))
holds for all elements F(z) and G(z) of JC(E (a)).

52. SPECIAL GAUSS SPACES

Examples of Hilbert spaces of entire functions appear in the eigenfunction
expansions associated with Gauss’s hypergeometric function. The Gauss
spaces are closely related to the Paley-Wiener spaces and satisfy a similar
identity. Two real parameters £ and & enter into the statement of the identity.
We start with the special case £ = 1.

THEOREM 52. Let %z be a real number, and let J(E) be a given space,
not one-dimensional, such that E*(z) = E(—z). Assume that F(z - 1)
belongs to JC(E) whenever F(z) belongs to J¢(£) and that the identity
F+1) + (k= HFC+ ) — F(=0]/(G —it), @)
= F@), Gt +1) + (A — H[GE + 9 — G(=)]/(G — i)

holds for all elements F(z) and G(z) of J&(E). Then there exist real numbers
b 1, and s such that 1 = s* — pr and such that

Az +1) + (h— DIA(z + i) — A=D1 — iz) = A(2)s — iB(2)r,

B(z 4-1) + (A — P[B(z + 1) — B(—=2)]/(} — i2) = id(2)p + B(2)s.
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Proof of Theorem 52. When F(z) = K(«, z) and G(z) = K(p, z) for some
fixed numbers « and f, the identity reads
F(B+ 1) + (h— HIFP +3) — F(=B))/(} — i)
= G(a + ) + (A — P[CG(a + i) — G(—0)]/(F -+ &)
An equivalent identity is
K(w, z +14) + (h — HIK(w, z + i) — Kw, —2)]/(} — i2)
= K(w + 14, 2) + (h — H[K(w + i, 2) — K(—w, 2)]/(§ + 1@).
But
alz +i— &) K(w, z + i) —m(z + 1 — @)K(w + 1, z)
= B(z + ) A(w) — A(z + i) B(w) — B(2)A(w + i) + A(2)B(w + 1),
(z + i — B)K(w, z + 1) — K(w, —2)1/(} — i2)
—a(z+i— ®)[Kw+ 1, z) — K(—w, 2)][/(F + @)
— A@)[B(z + i) — B(—2)|(} — i2)
— Bw)[4(z + i) — A(—2)]/(G — 12)
— B(2)[A(w + i) — A(—w)]/(} + @)
+ A Blw + 1) — B(—w))/(} + id).
It follows that
Aw){B(z + 1) + (h — })[B(z +1) — B(—2)]/(} —i2)}
— Bw){A(z +1) + (h — PIA(z + 1) — A(=2)]/(E& — iZ)}
— B2){A(w + i) + (b — H[Aw + i) — A(—w))/(} + id)
+ A(2){B(w + i) + (h — D[Bw + i) — B(—w)]/(} + ZW)} = 0.

Since A(Z) and B(z) are linearly independent, there exist numbers g, 7, and
s, p and r real, such that

Az + i) + (h = DIA(z + i) — A(—2)])(} — iz) = A(2)s — iB()r,
B(z+ i) -+ (b = DBz + i) — B(—2)][(} — iz) = id(2)p + B(2)s.

Since E*(z) = E(—z), the same formulas hold with s replaced by 5. It

follows that s is real.
The recurrence relations can now be written

(h — i2)A(z + i) = a(2)A(z) + c(sz(z),
(h — i2)B(z + i) = b(2)A(2) + d(2)B(2)
where
ae) = (h— 3 +s(h— i), b(2) = ib(h — i2),
o(z) = —ir(} — i2), d(z) = —(h — §) + s(k — i2).
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Starring each side of these equations and replacing z by z -+ 4, we obtain

(h — 1+ i2)A(2) = a*(z + ) A(z + 1) + c*(z + ) B(z 4 1),
(b —1+1i2)B(2) = b*(z + ) A(z + 1) + d*(z + ) B(z - 9).

It follows that
(b —iz)(h — 1 + i2)A(z) = [a*(z + 1)a(z) + ¢*(z + 1)b(2)]4(z)
+ [a*(z + 1)e(2) + ¢*(z + i)d(2)]B(z),
(b= i2)(h — 1+ i2)B(2) = [b*(z + Dal2) + d*(z + Db(2)]A(2)
+ [6%(z + 1)e(2) + d*(z + 1)d(2)]B(2).

Since

a*(z + 1) = —d(2), b¥(z 4 1) = b(2),
c*(z 4 1) = ¢(2), d*(z 4 1) = —a(z2),

these equations reduce to the condition
(b —iz)(h — 1 +iz) = —a(2)d(2) + b(2)¢(2),

which is equivalent to the requirement that 1 = s* — pr,

PROBLEM 236. In Theorem 52 let 4 be a solution of the equation A2 —
22s 41 =0, and let » and » be numbers such that su -- v = Au and
so — iru = Q. If F(z) = A(2)u + B(z)v, show that

Fz +1) + (h = IF(z + i) — F(—=2)]/(} — iz) = IF(2).

Show that
lim Fliy + i)/F(iy) — 2

y—r+oo

if # and v are not both zero.

PROBLEM 237. Let JC(E(z)) and JC(E(b)) be given spaces such that
J(E(a)) is contained isometrically in JE(E(6)) and FE(a, z)[E(b, z) has no
real zeros. If JE(E(b)) satisfies the hypotheses of Theorem 52 for some
number 4, if E*(a, z) = E(a, —z), and if J(E(a)) is not one-dimensional,
show that JC(E(a)) satisfies the hypotheses of the theorem for the same
choice of 4.

PROBLEM 238. In Problem 237 assume that the orthogonal complement
of J6(E(a)) in JE(E(b)) has dimension zero or one and that E(a, 0) = E(b, 0).
Show that the orthogonal complement is spanned by a function F (z) of the
form F(z) = A(a, 2)u + B(a, 2)o = A(b, z)u -+ B(b, z)v where u and v are
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real numbers which satisfy the hypotheses of Problem 236 for E(a, z) and
for E(b, z). Show that any such function F(z) vanishes identically.

PROBLEM 239. Let {J(E(a))}, a > 0, be a given family of spaces associated
with a nondecreasing, matrix valued function

() ﬂ(t))
p) ()

so that E(a, z) is a continuous function of a for each fixed z and so that

o |

(A(b, z), B(b, 2))I — (A(a, z), B(a, 2))] = zfab (4(, z), B(;f, z))dm(t)

when 0 < a < b << co0. Assume that m(¢) is an absolutely continuous func-
tion of ¢ and that there exists a real number 4 such that the hypotheses of
Theorem 52 are satisfied for every index a. Show that the quantities p(a),
r(a), and s(a) defined by the theorem are absolutely continuous functions of a
and that

p(a)y' (@) = s'(a) = r(a)o’(a),
r(a)p'(a) — s(a)s'(a) = 2(h — 3)s'(a) = s(a)s’(a) — p(a)r"(a)

whenever «'(a) and y’(a) exist. Show that p(a)r(a) = 0 and that s(a)? > 1.

PROBLEM 240. In Problem 236 show that # and v can be chosen so that
u > 0 and i > 0. Show that F(zy) > 0 for y > 0 and that 4 > 0. Show
that s > 1.

PROBLEM 241. If E(2) satisfies the hypotheses of Theorem 52, show that
E(z) = S(2)E,(z) where E;(z) is an entire function of Pélya class which
satisfies the hypotheses of the theorem and S(z) is an even entire function
which is real for real z and periodic of period 7. Show that A > 1,p > 0, and
r > 0 in Problem 236.

PROBLEM 242. Show that

h—%

et r(a)

s(a) + 1
and —
! ’\/x(a)2 —1

s(a) — 1

s(a) — 1
s(a) 4+ 1

(a)
Vs(a)? — 1

are constants in Problem 239. If

li\ir; [B(a, 2)4(a, w) — A(a, z) B(a, w)] = 0

for all complex z and w, show that lim s(a) = 1 as a ™\ 0.
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PROBLEM 243. Show that |I'(1 — iz)| is a nondecreasing function of
» > 0 for each fixed x, z = x + 9.

PROBLEM 244, Show that an entire function is a constant if it is periodic
of period ¢ and of bounded type in the upper half-plane.

53. CONSTRUCTION OF SPECIAL GAUSS
SPACES

The above analysis allows a direct construction of the special Gauss
spaces.

THEOREM 53. Let % be a given positive number, let a(¢) and p(¢) be
differentiable functions of ¢ > 0 such that

o' (f) = tanh®1 (1) and 9'(t) = coth®* ()

for t > 0, and let B(f) = 0. Then there exists a unique family (E(¢, z)) of
entire functions of Pélya class, ¢ > 0, such that E(¢, z) is a continuous
function of ¢ for every z, such that

(A(b, z), B(b, z))I — (4(a, 2}, B(a, 2))] = zfab (4(t, 2), B(¢, z))dm(t)

when 0 <<a < b < o0, and such that lim E(¢, z) = 1 as ¢\ 0 for all
complex z. A space JC(E(a)) exists for every a and E*(a, z) = E(a, —z).
The space is the set of entire functions F(z) such that F(z) and F*(z) are of
bounded type and of mean type at most 4 in the upper half-plane, and such
that

f*"" IF()T(h — it) [T} — it)|2dt < co.

=00

The integral is then equal to

72 F ) B, 1ed T3 (3)

for every F(z) in J¢(E(a)). The recurrence relations
A(a, z + i) + (h — §)[A(e, z + 1) — A(a, —Z)]v/(% — 12)

= A(a, z)s(a) — 1B(a, z)r(a),
Bla, z +1) + (h — $)[B(a, z + i) — Bla, —2)]/(} — i2)

— id(a, 2)p(a) + B(a, 2)s(a)
hold with s(a) = cosh a,

p(a) = sinh @ tanh® (34) and 7r(a) = sinh a coth?~1 (1a).
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Proof of Theorem 53. Since fol a(f)dy(t) < oo, the existence of the family of
functions E(a, z) is given by Theorem 41. By Problem 180, E*(a, z) =
E(a, —z) for every index a. We show that the stated recurrence relations
are valid. Let

Pa, 2) = (4 — i2)[A(a, 2)s(a) — iB(a, 2)7(a)] + (h — D44, 2),

Q(a, 2) = (} — 12)[id(a, 2)p(a) -+ B(a, 2)s(a)] — (h — $)B(4, 2)

with p(a), 7(a), and s(a) defined as in the statement of the theorem. The
equations

0P (a, 2)[0a = —(z + 9)Q(q, 2)y (@),
0Q(a, 2)[0a = (z + i)P(a, 2)a'(a)
are verified by a straightforward calculation since
s'(a) = p(a)y’(a) = r(a)e(a),
r'(a) = s(a)y’(a) — 2(h — $)¥'(a),
t'(a) = s(a)o(a) + 2(h — })o’(a).
Since the integral equation for E(a, z) implies that
04(a, z -+ 1)[0a = —(z + )B(a, z + ©)y'(a),
0B(a, z + 9)/0a = (z + i)A(a, z + i)o/(a),
the expression
P(a, 2)Bla, z + 1) — Q(a, z)A(a, z 4 1)
is independent of a. Since lim E(a, z) = 1 as a 0, lim Q(q, z2) =0 as
a ™ 0. Since
B(a, z) = zfo A(t, 2)da(t),

we obtain lim B(a, z)ja(a) == z as a ™\ 0. It follows that lim P(a, z) =
h — iz as a 0. Since the expression

P(a, 2)Bla, z + 1) — Q(a, 2)4(a, z + 1)

has limit zero as a “ 0, it vanishes identically. Since 4(q, z) and B(a, z)
have no common zeros,

S(a, z) = P(a, 2)[Aa, z + 1) = Q(a, 2)[{B(a, z + 1)

is an entire function. Since 98(a, z)/0a = 0, S(a, z) is independent of a.
Since lim S{a, z) = h — iz as a \ 0, S(a, z) = k — iz for all . The desired
recurrence relations for A(a, z) and B(a, z) follow.
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Note that the hypotheses of Theorem 51 are satisfied with =(¢) =
g(t) =r(t) = o(t) = 0, and

p(t) = tanh®* (4t) = s(t)~1.

3

Therefore if we introduce the function
D(a, z) = Ala, 2) tanh** (Ja) — iB(a, z) coth®* (}a)
we can conclude that the limit

W(z) = lim ¢**®(a, z)
4— 0
exists for y > 0. The limit function is analytic in the upper half-plane and
has no zeros in the half-plane. The function ¢**®(a, z}/W(z) is bounded,
and bounded away from zero, in the upper half-plane, for each fixed a. The
recurrence relations for 4(a, z) and B(a, z) imply that

(h —iz)®(a, z 4 i) = (3 — 12)D(a, 2)e* + (h — ) D*(q, z).
Since @*(a, z)/®(a, z) is bounded by one in the upper half-plane,
(h —i2)W(z + 1) = (} — iz) W(=2).

We can now write

W(z) = T(2)T(% — iz)/T(h — iz)

where T'(z) is an entire function which is periodic of period ¢ and has no
zeros. Since I'(§ — iz)/I'(h — iz) is of bounded type in the upper half-plane
by Problem 243 and the recurrence relation for the gamma function,
E{a, 2)|T(2) is of bounded type in the upper half-plane for every index a.
Since E(a, z) is of Pélya class, E(a, z)[E(a, z + i€) is bounded by one in the
half-plane for every e > 0. It follows that T(z + i€)/T(z) is of bounded
type in the half-plane when € > 0. Since the function is periodic of period i,
it is a constant by Problem 244. Since e is arbitrary, we can conclude that
T(z) is the exponential of a linear function. Since T(z + ¢) = T(z) and
since T*(z) = T(—2z), T(z) is a constant. Since
W(0) = lim tanh™* (}a) = 1,
a— 0

we obtain

T(0) = '(®)/I(%).

The theorem now follows from Theorem 51.

PROBLEM 245. Show that
Ala, z) = cosh® ({a)F(h — iz, h + iz; h; —sinh? (3a)),
Bla, z) = sinh® (La)(z/l)F(h — iz, h + iz; h + 1; —sinh? (}a))

in Theorem 53. If /(¢) and g(¢) are elements of L*(— c0, -} c0) which vanish
outside of (—a, @), such that g(¢) = ¢!f(¢) for almost all ¢, show that their
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eigentransforms F(z) and G(z), defined as in Problem 231, are related by
G(2) = F(z +4) + (h — PIF(z + 1) — F(=2)]/G — i2).
Show that J¢(£(a)) satisfies the hypotheses of Theorem 52.

PROBLEM 246. If JC(E) is a given space which satisfies the hypotheses of
Theorem 52, show that there exists an index ¢ in Theorem 53 such that the
transformation F(z) — S(z)F(z) is an isometry of JE(E(a)) onto JC(E) for
some even entire function S(z) which is real for real z and periodic of
period ¢.

54. GENERAL GAUSS SPACES

A more complicated recurrence relation holds for the general Gauss

spaces.

THEOREM 54. Let % and £ be numbers, (2 — 1)(k — 1) %0, and let
JE(E) be a given space, not one-dimensional, such that E*(z) = E(—z).
Assume that F(z + i) belongs to the space whenever F(z) belongs to the
space and that the identity

(F(419) + 20 = HE — PIFE +0) = F(=)1/(E — )
— 20k — 1)(k — DE(E + /(1 — it), G(e))
= (F(0), G(t + ) + 2(h — H(*k — PGt + i) — G(—=0)]/(F — 1)
| — 20k — 1)k — DG( + )](1 — it)
holds for all elements F(z) and G(z) of the space which vanish at the origin.
Then there exist a real number u and an imaginary number » such that
L(z) = A(2)u + B(z)v has value | at —i and such that the identity
(Flt 413 + 20k = 5 — HIFCE + 1) — F(=))/G — )
— 90k — 1)(k — DIF( + i) — LOFO)I/L — it), 6(@)
= (F(1), Gt + i) + 2(h — H(k — DG + 1) — G(—n]/(F — &)

—2(h = )k — DIG( + 9 — LOGO)]/(1 — 1))
holds for all elements F(z) and G(z) of the space. There exist real numbers
b, 1, and s such that 1 = s — pr and such that
Az +10) +2(h — )k — H[A(z + 1) — A(—2)]/(G — i)

—2(h — L)(k — D[A(z + i) — LAQ))(1 — iz)
— 27ri{h — 1) (k — 1)oK(0, 2) = A(z)s — 1B(Z)r,
B(z414) +2(h — H(k — P[B(z+ i) — B(—2)]/(} — i2)
—2(h — 1)k — DB(z + O)[(1 — iz) — 2mi(h — 1)(k — 1)uK(0, 2)
= iA(z)p + B(z)s.
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These numbers are related by the identity

2hk — 4(h — §)(k — $)A(0)u 4 2(h — 1) (k — 1)A(0)2u2 = A(0)(su — i),
Proof of Theorem 54. Let P(z) be the choice of an entire function which hag
value 1 at —i such that [F(z) — P(2)F(—i)]/(1 — iz) belongs to JC(E)
whenever F(z) belongs to J¢(E). Since we assume that F(z + i) belongs to
JC(E) whenever F(z) belongs to J¢(E), the transformation

F(2) > F(z +14) + 2(h — ) (k — DIF(z + i) — F(—2]/(} — iz)

— 20k — D)k — D[F(z + i) — PAFO0)]/(1 — iz)
is everywhere defined in J¢(E). Since the transformation has a closed graph,
it is bounded. By hypothesis, the expression
(Bt +1) +2(h — Pk — PIF(E + 1) — F(—0]/(} — i)

— 2(h — 1)(k — DIF(t + i) — POFO)]/( — it), G(t))
— (F(), Gt +1) + 20k — §(k — PG + 1) — G(—1)]/(} — it)
—2(h = D)(k = D[G(t + i) — POGO)]/(1 — it))

vanishes for all elements F(z) and G(z) of Je(E) which vanish at the origin,
The expression depends continuously on F(z) for each fixed G(z). If F(z)
and G(z) are interchanged, the expression is conjugated and multiplied by
—1. Since we assume that (2 — 1)(k — 1) % 0, the expression is of the form

2(h — )k — 1)¢FQ), Q0)G(0) — 2(h — 1) (k — 1)F(0)(Q(£), G(¢))
for some fixed element Q(z) of J(E). Then
L(2) = P(2) + (1 —i2)Q(2)
is an entire function which has value 1 at —¢, such that [F(z) — L(z)F(—1)]/
(I — iz) belongs to JC(E) whenever F(z) belongs to JC(E), and such that the
identity
(Bt +1) 4208 — Dk —PIF(t + 1) — F(—1)))(G — it)
— 2(h = 1)(k = DIFE + i) — LOFO)1/(1 — i), G(t))
= (F(0), Gt +9) +2(h — Pk — G + i) — G(—D(F — it)
= 20k = 1)k = DIG( + 1) — L(HG(0)]/(1 — if))
holds for all elements F(z) and G(z) of J(E). When F(z) = K(a, z) and
G(z) = K(f, z) for some fixed numbers « and B, the identity reads
F(B +14) +2(h = §)(k — DIFB + i) — F(—B)1/(} — if)
—2(h = 1)k = DIF(B + i) — LIBF(0)I/(1 — if)
= Gla +1) +2(h — })(k — DG +4) — G(—)]/(3 + @)
= 2(h = L)(k = D[G(a + i) — L()G(0)]/(1 + i5).
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An equivalent identity is
K(w, 2 +3) + 20b — Dk — DIK(w, z + ) — K(w, =21/} — i2)
— 2(h — V(k — 1)[K(w, z + i) — L(2)K(w, 0)]/(1 — iz)
— K(w 4+, 2) + 2(h — Bk — DK + i, 2) — K(—w, 2/} -+ i)
— 2(h — 1) (k — )[K(w + 1, 2) — L(w)K(0, 2)]/(1 + ).
But
a(z +i— ®)K(@w, z + i) —w(z + 1 — @) K(w + 1, 2)
= B(z + i) A(w) — A(z + i)B(w) — B(z)A(w + 1) + A(2) B(w + 1),
n(z + i — ®)[K(w, 2 + i) — K(w, =9/} - i2)
— (i — DK + i, 2) — K(—w, 2)/G + i)
= Aw)[B(z +i) — B(— 2/ — 2
— B@)A(z + i) — A=)/} — i2
— B +i) — A(—w))[(h + i)
+ A B + i) — B(—w))/(} + i),
m(z +1i— ®)[K(w, z + 1) — L(2)K(w, 0)]/(1 — i2)
—a(z + i — @) [K@w + i, z) — L{w)K(0, 2)]/(1 + iw)
= A(w)B(z -+ )(1 — iz) — B@)[A(z + i) — LA — i2)
— B[ + i) — L) AQ)/(L + i@) + A(2)Blw + /(1 -+ id)
— mil(z)K(w, 0) + 7il(w)K(0, z).
1t follows that
A@){B(z + 1) + 2(h — Dk — DBz + i) — B(=2))/(F —i2)
— 2(h — 1)k — DBz + D/(1 — i2)}
— B){A(z + 1) + 20h — )k — DIA(z +9) — A=)/} —i2)
— 20k — 1)(k — DIA(z -+ i) — L2 4©))(1 — iz)}
— BE){A(w +3) + 20k — Dk — DI + i) — A—w))/(} + iw)
— 200 — D — D[AGw + i) — L) A1 + i#)}
+ A(2){B@ + 1) + 20: — )k — DB + ) — B(—w)l/( + i)
— 20k — Dk = DB(w + /(1 + i)}
= —2mi(h — 1)(k — 1)L(2)K(w, 0) -+ 2mi(h — 1)(k — 1)L(w)K(0, z).
Since 4(z) and B(z) are linearly independent, the functions
Az + ) + 200~ Bk — DA + 1) — A(—2)/G — i2)
— 20— Dk — DIAGz + ) — LEAOI( — i2)
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and

B(z +-4) + 2(h — §)(k — H[B(z + 1) — B(—=2)]/(} — iz)

= 2(h — 1)(k — DB(z + )/(1 — iz)
can be written as linear combinations of L(z), 4(z), B(z), and K(0, ). A
contradiction is obtained on assuming that these four functions are linearly
independent and making corresponding substitutions. We can therefore
conclude that the functions are linearly dependent. Since we assume that
the space J¢(E) is not one-dimensional, the last three of the functions are
linearly independent. We can therefore write

L(z) = A(2)u + B(z)v + AK(0, 2)

for some numbers u, », and A. Substitution in the main identity will show
that 2 is real. Since we can add a real multiple of (1 — iz)K(0, z) to L(z)
without changing the defining property of the function, we can always
choose L(z) so that A = 0. The main identity now reads

Aw){B(z + i) + 2(h — 1k — H[B(z + i) — B(—2z)]/(} — iz)
— 2(k — 1)(k — 1)B(z +4)/(1 — iz) — 2mi(h — 1)(k — 1)aK(0, z)}
—B(w){A(z +1) + 20b — Dk — DAz +1) — A(—2)]/(}3 — i2)
— 2k — 1)(k — D[A(z + 1) — L()A0)]/(1 — iz)
+ 27i(h — 1) (k — 1)3K(0, 2)}
—B(2){(w + i) + 20k — 3 (k — DA + 1) — A—~w))j(} + i)
— 20k — (k= D[dw + i) — L) A©O)]/(1 -+ i)
— 2mi(h — 1)(k — 1)oK(w, 0)}
+A(2Blw + i) + 206 — Pk — DBl + i) — B(—w)]/(} + i)
— 20k — 1)(k — 1)B(w + i)/(1 + i)
+ 2mi(h — 1)(k — DuK(w, 0)} = 0.
Since A(z) and B(z) are linearly independent, there exist numbers b, 1, and
s, p and r real, such that
A(z 1) + 2(h — H(k — P[A(z + 1) — A(—2)]/(} — i2)
= 2(h — Dk — D[A(z + i) — L(2)4(0)]/(1 — iz)
+ 2mi(h — 1)(k — 1)3K(0, z) = A(z)s — iB(2)r,
— B - DBz +1) — B(—2)]/(} — iz)
(k — D)B(z +14) /(1 —iz) — 2mi(h — 1) (k — DaK(0, z)
= id(z)p + B(z)s.

B(z + i) 4 2(h
—2(h — 1)
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Since E*(z) = E(—z), the same formulas hold with # replaced by &, v
replaced by —7, and s replaced by & Since 4(z), B(z), and K(0, z) are
linearly independent, z and s are real and v is imaginary. The recurrence
relations can now be written

z(h — iz)(k — iz)Ad(z 4+ 1) = a(2)A(z) + ¢(2)B(z),
z(h — iz)(k — i2)B{z + 1) = b(2)A(2) + d(z2)B(z)
where
a(z) = 2(h — Hk — Hz(l — iz) — 2(h — 1)k — DA(O)uz(} — iz)
+ sz(3 — iz)(1 — iz),
b(z) = ipz(k — i)(1 — iz),
c(z) = 2i(h — D) (k — 1)A(0)o(§ — 12) — irz(3 — i2)(1 — iz),
d(z) = —2(h — H(k — H=(1 — i2)
+ 2i(h — 1)(k — DAO)u(} — i2)(1 — iz) + sz(}3 — iz2)(1 — iz).

Starring each side of the equations and replacing z by z + 7, we obtain

(z+ 0k —14i2)(k — 1 4 iz)d(2)
= a*(z 4 1)A(z + 1) + Mz + )B(z + 1),
(z+ O —142)(k — 1 4+ i2)B(z)
= p%(z + D)A(z + i) + d¥(z + DBz + i),
It follows that
z(z + )k —i2)(h — 1 4 iz)(k — i2)(k — 1 4 i2) A(2)
= [a*(z + 9a(2) + ¢*(z +1)b(2)]4(2)
+ [a*(z + 9)e(2) + ¢*(z + 9)d(2)]B(2),
zZ(z+ ) (h—i2)(h — 1 +iz)(k —iz)(k — 1 + i2)B(2)
= [6%(z + 9)a(z) + d*(z + 9)b(2)]4(2)
4 [6*(z + i)e(z) + d*(z + ©)d(2)]B(z).

Since

a*(z + 1) = d(z}, b*(z 4 i) = —b(2),
¥z 4 i) = —e(2), d*(z + 1) = a(z),
these equations reduce to the condition
z(z 4+ i) (h — i2)(h — 1 4 iz2)(k — i2)(k — 1 + i2) = a(2)d(z) — b(2)¢(z).

By comparing the coeflicients of the highest power of z on each side of the
equation, we obtain 1 = 52 — pr. The equation now reduces to the identity
stated at the end of the theorem.
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PROBLEM 247. In Theorem 54 let A be a solution of the equation
A2 —22s 4+ 1 =0, and let U and V be numbers such that sU - iV = AU
and sV — U = AV. If F(z) = A(z)U + B(z)V, show that

Flz 4-14) + 2(h — §)(k — P[F(z + 1) — F(—2)]/(} — iz)
— 2(h — D)k — D[F(z + 1) — LEFO)I)(1 — iz) = AF(2).
Show that
lim F(iy -+ i) [F(iy) = A
Y=+
if F(z) does not belong to JC(E) or if F(z) is an odd function which belongs
to Je(E) and does not vanish identically.

PROBLEM 248. Let J(E(a)) and J(E(b)) be given spaces such that
J(E(a)) is contained isometrically in JC(E(b)) and E(a, z)/E(b, z) has no
real zeros. If JC(E(b)) satisfies the hypotheses of Theorem 54 for some j
and £, if E*(a, z) = E(a, —z), and if J8(E(a)) is not one-dimensional, show
that JC(E(a)) satisfies the hypotheses of the theorem for the same % and %.

PROBLEM 249. In Problem 248 assume that the orthogonal comple-
ment of JC(Z(a)) in JC(E()) has dimension zero or one and that E(a, 0) =
E(b, 0). Show that the orthogonal complement is spanned by a function
F(z) of the form

F(z) = A(a, 2)U + Bla, 2)V = A(b, 2)U + B(b, )V

where U and V are real numbers which satisfy the hypotheses of Problem 247
for E(a, z) and for E(b, z). Show that such a function F (z) vanishes identi-
cally.

PROBLEM 250. Let {J¢(E(a))}, a > 0, be a given family of spaces associated
with a nondecreasing, matrix valued function

() ﬁ(t))
B ¥

so that E(a, z) is a continuous function of « for each fixed z and so that

m(t) = (

(A(b, 2), B(b, 2)I — (A(a, 2), Bla, 2))] = z [ (A(t, 2), B(t, 2))dm(z)

when 0 <a < b < co. Assume that m(f) is an absolutely continuous
function of ¢ and that there exist numbers % and # such that the hypotheses
of Theorem 54 are satisfied for every index a. Show that the quantities p(a),
r(a), s(a), u(a), and v(a) defined by the theorem are absolutely continuous
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functions of ¢ and that
u'(a) = iv(a)a'(a@) and o(a) = —iu(a)y’'(a),
p(a)y'(a) = 5'(a) = r(a)o’(a),
r(a)p’(a) — s(a)s'(a) = s(a)s’(a) — p(a)r'(a)
=4(h — Dk — Hs'(a) — 4(h — 1)(k — 1)A4(a, O)u(a)s'(a)

whenever «'(a) and y’(a) exist. Show that p(a) > 0, r(a) > 0, and s(a) > 1.
If

lim [B(a, 2)A(a, w) — A(a, 2)B(a, w)] =0

ax o0

for all complex z and w, show that lim s(a) = 1 as a ™\ 0.

PROBLEM 251. Ifs(a) = cosh a in Problem 250, show that
B(a, )y (@) = [ (e, 2)

where f(a, z) is a solution of the equation

2% (a, z) = —f"(a, 2)

+2(k—%)(k——%)cosha—|—h2—h+k2—k—|—%f(a’z)

sinh? g

for each fixed z. Show that
fla, Z) = sinh” (a) tanh*~? (}a)g(—sinh? (3a), 2)
where g(a, z) is a solution of the hypergeometric equation
a(l —a)g"(a, 2) + [h + k — (2h + 1)alg'(a, 2) — (B2 + 2*)g(a, 2) = 0

for each fixed z. If & + & > 1, show that g(a, z) is a constant multiple of
the hypergeometric function F(h — iz, h + iz; h + k; a) for each fixed z.
Show that there exists an even entire function $(z), which is real for real z
and periodic of period 4, such that

B(a, )Vy'(a)
= sinh® (@) tanh*¥ (3a) 28(2)F(h — iz, b + iz; h + k; —sinh? (}a))

for all ¢ and =z.

PROBLEM 252, Let % and k be given positive numbers, and let

T(} — iz) (1 — iz) 2T'(h 4 )

W(z) = D(h — i)'k — iz) I'd)
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For every positive number a show that the set of entire functions F(z) such
that F(z) and F*(z) are of bounded type and of mean type at most a in the
upper half-plane and such that

112 = [ 1B W) < oo

is equal isometrically to a space J¢(E(a)) such that E*(a, z) = E(a, —z)
and E(a, 0) = 1. Show that the hypotheses of Theorem 54 are satisfied for
every index a. Show that the hypotheses of Problems 250 and 251 are
satisfied for a suitable choice of m(¢). Show that

ala) \/m = sinh” (a) tanh*~? (3a)F(h, h; b -+ k; —sinh? (1a)),
\/;’—(;)— = W(0)~! tanh*~* (La)F(h, 1 — k; 1; —sinh~2 (}a)).
If f(¢) belongs to L%(0, oo} and vanishes outside of (0, a), show that
7F(z) = 2 f0°° F(t) sinh® () tanh®¥ (3¢)
X F(h — iz, h + iz; h + k; —sinh? (}))dt
is an odd element of ¥(E(a)) and that

a [T @ Wi e = [ 71701,
Show that every odd element of J(E(a)) is of this form.
PROBLEM 253. If J(E) is a given space which satisfies the hypotheses
of Theorem 54 for some % and %, show that a space JC(E;) exists such that
(1 + iz/h)[By(2)A(th) — Ay(z)B(ik)] = B(z)A(ih) — A(z)B(ih).

Show that it satisfies the hypotheses of Theorem 54 with % replaced by
k+1.

55. SPECIAL KUMMER SPACES

The Kummer spaces are a limiting case of the Gauss spaces and satisfy
a similar identity. A real parameter k appears in the identity. The special
case k = 1 1s of particular interest.

THEOREM 55. Let JE(E) be a given space, not one-dimensional, such that
E*(z) = E(—2z). Assume that [F(z + i) — F(—z)]/(} — iz) belongs to the
space whenever F(z) belongs to the space and that the identity

(F@ + 1) — F(=0]/(} — it), G(#)) = (F(1), [G(t + i) — G(—)]/(} — it))
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holds for all elements F(z) and G(z) of the space. Then there exist real
numbers p, 7, and s such that pr = s? and such that

[A(z + i) — A(=2)]/(} — iz) = A(2)s — iB(2)r,
[B(z + i) — B(—2))/(h — i2) = id(2)p + B(2)s.
Proof of Theorem 55. When F(z) = K(«, z) and G(z) = K(B, z) for some
fixed numbers « and f§, the identity reads
[F(B + i) — F(—B)1/(} — if) = [Glo + i) — G(—w)]/( + i&).
An equivalent identity is ‘
[K(w, z + i) — K(w, —2)]/(} —i2) = [K(w + i, 2) — K(—w, 2)]/(} + iD).

As in the proof of Theorem 52 it follows that

Aw)[B(z + i) — B(—=2))/(} — iz) — Bw)[A(z + i) — A(—2)][(} — iz)
— B(2)[A(w + i) — A(—w))[(} + i)
+ A(2)[Bw + i) — B(—w)][(} + @®) =0
and that
[A(z + i) — A(=2)1/(} — iz) = A(2)s — iB(2)r,

[B(z + i) — B(—2))|(} — iz) = id(2)p + B(2)s
for some numbers p, r, and 5. These recurrence relations can be written

Az + i) = a(2)A(2) + ¢(2)B(z)
Bz + i) = b(2)A(z) + d(2)B(z)
where
a(z) =1+ (& —iz)s, b6(z) = i(§ — 12)p,
c(2) = —i(} — iz)r, d(z) = =1+ (3 — i2)s.

As in the proof of Theorem 52 it follows that

A(2) = [a*(z + i)a(2) + *(z + i)e(2)]4(2)

+ [a*(z + )b(2) + o*(z + )d(2)]1B(2),
B(2) = [¢*(z + Da(2) + d*(z + i)e(2)]4(2)

1 [e*(z + 0)b(2) + d*(z + 1)d(2)]B(2).

Since

a*(z + 1) = —d(z), b*(z + 1) = b(2),
c*(z 4+ 1) = ¢(2), d*(z + i) = —a(z),
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these equations reduce to the condition
I = —a(z)d(z) + b(z)c(2),

which implies that pr = s2.

PROBLEM 254. In Theorem 55 let F(z) = A(z)u + B(z)v where u is 5
real number and v is an imaginary number such that ipp = su and —iru = g,
Show that
[F(z + i) — F(—2))](} — iz) = 2F(2)
and that
lim y~F(iy + i)[F(iy) = 2s
Yt
if v and v are not both zero. If G(z) = F*(z), show that G(z + 1) = G(—2).
Show that p, r, and s are nonzero. Show that all zeros of G(z) lie above the
real axis and that # and v have the same sign. Show that p, 7, and s have the
same sign. If u and i are chosen positive, show that F(iy) > 0 for y > 0,
Show that p, r, and s are positive.

It is convenient to parametrize Kummer spaces in decreasing order, so
that J¢(E(a)) contains JC(E(b)) when a < b.

PROBLEM 255. Let JC(E(a)) and JC(E()) be given spaces such that
JC(E(a)) contains JE(E(b)) isometrically and such that E(b, z)/E(a, z) has
no real zeros. Show that JC(E(b)) satisfies the hypotheses of Theorem 55 if
JE(E(a)) satisfies the hypotheses of Theorem 55 and E*(b, z) = E(b, —2z).
Show that the domain of multiplication by z is dense in any space which
satisfies the hypotheses of Theorem 55.

PROBLEM256. Let {J¢(E(a))}, @ > 0, be a given family of spaces associated
with a nonincreasing, matrix valued function

() B0
m@‘QMy@)

so that E(a, z) is a continuous function of 4 for each fixed z and so that
(A(b, z), B(b, 2))I — (A(a, z), B(a, 2))I = sz (A(2, z), B(¢, z))dm(t)

when 0 < a < b < 0. .If m() is an absolutely continuous function of ¢ and
if JC(E(a)) satisfies the hypotheses of Theorem 55 for every index a, show
that p(a), 7(a), and s(a) are absolutely continuous functions of ¢ and that
p(@)y'(a) = s'(a) = r(a)o’(a),
r(@)p'(a) — s(a)s'(a) = 25'(a) = s(a)s'(a) — p(a)r’(a)
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whenever «'(2) and 9'(a) exist. Show that
[p(a)/s(@)] exp [—2/s(a)] and [r(a)/s(a)] exp [2/s(a)]

are constants. Show that s(a) > s(b) when a < b and m(t) is not constant
in (a, b). If
lim [B(a, 2)A(a, w) — A(a, z)B(a, w)] =0

> 00

for all complex z and w, show that lim s(a) = 0 as @ — co.

56. CONSTRUCTION OF SPECIAL KUMMER
SPACES

We now construct the special Kummer spaces

THEOREM 56. Let «(t) and y(t) be differentiable functions of ¢ > 0 such
that
—ta'(f) = exp (—#) and —ty'(f) = exp (¥),

and let f(t) = 0. Then there exists a unique family (E(f, z)) of entire
functions of Pélya class, ¢ > 0, such that E(¢, z) is a continuous function of ¢
for every z, such that

(A(b, 2), B(b, 2))I — (A(a, 2), B(a, 2))] = z f” (A(t, 2), B(t, z))dm(t)

when 0 < a < b < o, and such that lim E(¢, z) = 1 as {— oo for all
complex z. A space J&(E(a)) exists for every @ > 0 and E*(a, z) = E(a, —2).
The space is the set of entire functions F(z) such that F(2)/T'(} — iz) and
F*(2)/T'(} — iz) are of bounded type and of mean type at most log (4/a) in
the upper half-plane, and such that

[rmw e — inpd < co.
The integral is then equal to
[ 1R @) B, P T ()

for every F(z) in J(E(a)). The recurrence relations

[A(a, z + 1) — A(a, —2)]/(} — iz) = A(a, 2)s(a) — iB(a, z)r(a),

[B(a, z + i) — B(a, —2)1/(} — iz) = id(a, 2)p(a) + B(a, 2)5(a)
hold with s(a) = 2/a,

pla) = 2atexp (—a) and r(a) = 2a7! exp (a).
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Proof of Theorem 56. Since f:o a(f)dy(t) > —oo, the existence of the

functions E(a, z) is given by Theorem 41 and Problem 180. To obtain
the recurrence relations, define

P(a, z) = (} — iz)[A(a, z)s(a) — iB(a, 2)r(a)] + A(a, z),
Qe 2) = (} — i2)[id(a, 2p(a) + Bla, 2)5(a)] — B(a, 2)

with p(a), r(a), and s(a) defined as in the statement of the theorem. The
equations

0P(a, 2)[0a = —(z + i)Q(a, 2)y'(a),
0Q(a, 2)/0a = (z + i)P(a, z)a'(a)
hold because

s'(a) = p(a)y'(a) = r(a)o’(a),
0'(a) = s(a)e’(a) + 2o(a),
r'(a) = s(a)y'(a) — 2y'(a).
Since

04(a, z +i)[/0a = —(z + i)B(a, z + i)y’ (a),
0B(a, z +1)/0a = (z 4 i) A(a, z + 7)o’ (a),

the expression

Pla, 2)B(a, z + i) — Q(a, 2)A(a, z + 1)

is independent of 4. Since lim E(q, z) = 1 and lim B(a, z)[a(a)

=z as
a — oo, the expression goes to zero as a — oo, and so vanishes identically,
Since A(a, z) and B(a, z) have no common zeros,

S(a, z) = P(a, 2)/A(a, z + i) = Q(a, 2)/B(a, z + 7)
is an entire function. Since 8S(q, 2)/da = 0, S{(a, z) is independent of a.

Since lim §(e, z) =1 as a — oo, S(a, z) = 1 identically., The recurrence
relations for A(a, z) and B(a, z) now follow.

If we introduce the functions

D(a, z) = A(a, 2)e4 — iB(a, z)ete,
it follows from Theorem 51 that

W(z) = lim (4/a)*®(a, z)
[N ]

exists for » > 0. The limit function is analytic and without zeros in the upper
half-plane. The recurrence relations for 4(a, z) and B (a, z) imply that

P(a, z +1) = (} — i2)D(a, 2)(4a) + D*(q, z).
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Since ®*(a, z)/®(a, z) is bounded by one in the upper half-plane, it follows
that

W(z +1i) = @ — iz W(2).
We can now write

W(z) = T(2)T'(} — 12)

where T(z) is an entire function which is periodic of period ¢ and has no
zeros. The proof of Theorem 53 will now show that 7(z) is a constant and
that
T(z) = lim ¢¥ =
A1)

The theorem follows from Theorem 51.

PROBLEM 257, In Theorem 56, let
®(a, z) = A(a, 2)e ¥ — iB(a, z)e*,
O(—a, z) = A(a, 2)e ¥ + iB(a, z)e**

for a > 0. If f(x) belongs to L2(— oo, + 00} and vanishes in some interval
(—a, a), show that its eigentransforms F(z), defined by

2nF(z) = |77 FOD(, D)t s
belongs to (E(a)) and that

om [ F(0)/E(a, 2dt = [T |£(0) 2t

for every F(z) in Je(E(a)). Show that every element of J¢(E(a)) is of this
form. Let f(x) and g(x) be elements of L?(— o0, 4c0) which vanish in
(—a, a), such that g(x) = 4x~Yf(x) for x > 0 and g(x) = 0 for x < 0. Show
that their eigentransforms are related by

G(z) = [F(z + 1) — F(=2)]/(} — 12).
Show that J(E(a)) satisfies the hypotheses of Theorem 53.

PROBLEM 258. If JC(E) is a given space which satisfies the hypotheses of
Theorem 55, show that there exists an index a in Theorem 56 such that the
transformation F(z) — S(2)F(z) is an isometry of J¢(E(a)) onto JE(E) for
some entire function §(z) which is real for real z and periodic of period i.

57. GENERAL KUMMER SPACES

A more complicated recurrence relation holds for the general Kummer
spaces.
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THEOREM 57. Let £ be a real number, &k 5= 1, and let J8(E) be a given
space, not one-dimensional, such that E*(z) = E(—z). Assume that
[F(z + 1) — F(—2)]/(} — iz) belongs to the space whenever F(z) belongs
to the space and that the identity

@k — DIF(E + i) — F(—)1/(G — it) — 20k — DF( + /(1 — it), G(®))
= (F(t), 2k — DG + i) — G(=]/(F — it)

—2(k — DG +)[(1 —12t))

holds for all elements F(z) and G(z) of the space which vanish at the origin.

Then there exists a real number # and an imaginary number » such that
L(z) = A(z)u + B(z)v has value 1 at —i and such that the identity

((@k — DIF( -+ i) — F(—H]/(3 — it
— 2k — D[E( + i) — LOFO1/(1 — it), G(1))
= (F(s), (2 — D[C(t + i) — G(—0)]/(} — it
— 2k — DGt + i) — LEHCO)I/(1 — it))

holds for all elements F(z) and G(z) of the space. There exist real numbers
2, 7, and s such that pr = 5% and such that

2k — D[A(z + 1) — A(—2)]1/(} — i2)
— 2k — D[A(z + i) — L(HAO)]/(1 — iz)
— 2mi(k — 1)oK(0, z) = A(z)s — iB(2)r,
@k — D[B(z + i) — B(—A1/(} — iz) — 20k — 1)B(z + )J(1 — iz)
— 2mi(k — 1)uK(0, z) = id(z)p -+ B(2)s.

‘These numbers are related by the identity
2k — 4(k — ) A(0)u + 2(k — 1)A(0)%u® = A(0) (su — ipo).

Proof of Theorem 57. By the proof of Theorem 54 there exists an entire
function L(z) which hasvalue 1 at —i such that [F(z) — L(2)F(—i)]/(1 —iz)
belongs to JE(E) whenever F(z) belongs to J&(E) and such that the identity
{2k — DIF@E + ) — F(—0]/( — i)
— 2k — D[F(t + i) — LOFO/( — it), G(&))
= (F(1), (2k — D[G(t + i) — G(—)]/(} — i)
— 2(k — DGt + 4) — L)G(0)]/(1 — it))
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holds for all elements F(z) and G(z) of J&(E). When F(z) = K(a, z) and
G(z) = K(f, z) for some fixed numbers « and B, the identity reads

(2% — DIF(B + i) — F(—F)1/(4 — if)
' — 2(k — DIF(B + i) — LOFOI/(L — if)
= (2k — D[G(x +14) ~ G(—0)]/(} + &)
— 20k — 1)[C(o + i) — L@)GO)I/(1 + ia).
An equivalent identity is
(2 — 1)[K(w, z + i) — K(w, —2)1/(} — i2) ~
— 2(k — D[K(w, z + 1) — L(2)K(w, 0)]/(1 — iz)
= (2k — D[K(w + i, 2) — K(—w, 2]/} + i@)
— 2(k — D[K(w + t, 2) — L(w)K(0, 2)1/(1 + D).
As in the proof of Theorem 54, it follows that

Aw){(2% — V[B(z + i) — B(~2)]/(} — iz) — 2k — DB(z + /(1 — i)}
— Bw){(2k — D[A(z + i) — A(—2)]/(G — i2)
— 2k — D[A(z + i) — L(A©O)]1/(1 — i2)}
— B(2){(2k — D[A(w + i) — A(—w)1/(} + iw)
— 2(k — D[A(w + i) — L{w)A(0)]/(1 + i@)}
+ A(2){(2k — D[B(w + i) — B(—w)/(} + i)
— 2(k — 1)B(w + /(1 + i)}
= —2mi(k — 1)L(2)K(w, 0) + 2mi(k — 1)L(w)K(0, z).

As in the proof of Theorem 54 we can choose L(z) of the form

L(z) = A(z2)u + B(z)v

for some numbers ¥ and ». The identity then reads

Aw){(2k — 1)[B(z + i) — B(—2)]/(} — i2)

— 20k — 1)B(z + )J(1 — iz) — 2mi(k — 1)7K(0, 2)}

— Bw){(2k — 1)[4(z + i) — A(—2)]/(3 — i2)
— 2k — D[A(z + i) — L(2)A(0)]/(1 — iz) + 2mi(k — 1)iK(0, 2)}

— B(2){(2k — D[A(w + i) — A(—w)]/(} + iw)
— 2k — D[A(w + i) — L) A0)]/(1 + i®) — 2mi(k — 1)oK(w, 0)}

+ A(2){(2k — 1)[B(w + 1) — B(—w)]/(} + i)
— 20k — 1)B(w + i)/(1 + @) + 2mi(k — 1)uK(w, 0)} = 0.
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Since A(z) and B(z) are linearly independent, there exist numbers p, 7, and
s, p and r real, such that

(2 — V[A(z + i) — A(—2))|(F — i2)
— 2k — D[A(z + i) — L@ A0/ — iz)

+ 27i(k — 1)3K(0, 2) = A(z)s — iB(z)r,
(2k — D[B(z + 1) — B(—2)1/(} — iz) — 2(k — DB(z +1)/(1 — i2)

4 27i(k — 1)uK(0, z) = iA(2)p + B(z)s.
Since E*(z) = E(—z), the formulas remain valid when « is replaced by #,
v is replaced by —7, and s is replaced by 5. Since A(z), B(z), and K(0, z)
are linearly independent, « and s are real and v is imaginary. The recurrence
relations can now be written

z2(k — i2)A(z + 1) = a(2)A(z) + ¢(2)B(2),
z2(k — i2)B(z + 1) = b(2)A(2) + d(2)B(z)

where
a(z) = (2k — D z(1 — iz) — 2(k — 1)A(Q)uz(} — iz)
+ sz(} —iz)(1 — iz),
b(z) = ipz(} —12)(1 — iz),
o(z) = 2i(k — DNAQO)o(} — iz) — irz(} — iz)(1 — i2),
d(z) = —(2k — Dz(1 — iz) + 2i(k — 1) A(O)u(y — iz)(1 — iz)
+ sz(3 — i2)(1 — i2).

Starring each side of the equations and replacing z by z + i, we obtain
—i(l —i2)(k — 1 4+ i2)A(2) = a*(z + D)A(z + i) + ¢*(z + 0)B(z 4+ 9),
—i(l —i2)(k — 1 + i2)B(z) = b*(z + i)A(z 4 @) + d¥*(z + ©}B(z + ).

It follows that

z(z + )k — i2)(k — 1 4 i2)A(2)

= [a*(z + 9)a(z) + ¢*(z + 1)b6(2)]4(2)
+ [a*(z + d)e(2) + ¢*(z + 9)d(2)]1B(2),

z(z + ) (k — i2)(k — 1 + i2)B(2)

— [0*(z + i)a(2) + d*(z + Db(2)]4(2)
+ [6*(z + D)e(2) + d*(z 4+ 1)d(2)]1B(2).

Since

a*(z + 1) = d(2), b*(z +8) = —b(2),
¥z 4+ 1) = —¢(2), d*(z + 1) = a(2),
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these equations reduce to the condition
z2(z + D)k — iz)(k — | 4 i2) = a(2)d(2) — b(2)¢(2).

By comparing the coefficient of the highest power of z on each side of the
equation, we obtain pr = s The equation is now equivalent to the identity
given at the end of the theorem,

PROBLEM 259, Show that g, r, and s are positive in Theorem 57. Show
that the domain of multiplication by z is dense in the space.

PROBLEM 260. Let JC(E(a)) and JE(E(b)) be given spaces such that
Je(E(a)) contains JE(E(b)) isometrically and such that E(b, z)/E(a, z) has no
real zeros. Show that JE(E(b)) satisfies the hypotheses of Theorem 57 if
JC(E(a)) satisfies the hypotheses of Theorem 57 and if E* (b, z) = E(b, —2z).

PROBLEM261. Let {}(E(a))}, a > 0, be a given family of spaces associated
with a nonincreasing, matrix valued function

_ (d(t) ﬂ(t))
m(t) =
gl 20
so that E(a, z) is a continuous function of a for each fixed z and so that
(A(b, 2), B(b, 2)I — (A(a, 2), Bla, 2)) = = ["(A(t, 2),B(t, 2))dm(?)
when 0 < a < b < . If m(t) is an absolutely continuous function of ¢ and
if Je(E(a)) satisfies the hypotheses of Theorem 57 for every index a, show

that p(a), r(a), s(a), u(a), and v(a) are absolutely continuous functions of a
and that

u'(a) = iv(a)a'(a) and v'(a) = —iu(a)y'(a),
p(@)y'(@) = 5'(a) = r(a)a’(a),

r(a)p'(a) — s(a)s'(a) = s(a)s'(a) — p(a)r'(a)
= 4(k — })s'(a) — 4(k — 1)A(a, O)u(a)s'(a)

whenever «'(a) and 9'(a) exist. If

lim [B(a, 2)A(a, w) — A(a, 2)B(a, w)] = 0

[ 2ad "]

for all complex z and w, show that lim s(a) = 0 as a — o0.

PROBLEM 262. If s(a) = 2/a in Problem 261, show that

B(a, 2)V —y'(a) = f(a, 2)
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where f(a, z) is a solution of the equation
2f(a, 2) = —[a*f'(a, )] + [1a® + (k — })a — 11 (s, 2)

for each fixed z. Show that f(a, z) = g(a, z)/a where g(a, z) is a solution of
the Whittaker equation

g z) +[—t+ G — Rt + (§+ 2%a?g(a, 2) =0

for each fixed z. Show that g(a, z) is a constant multiple of the Whittaker
function W,_, , (a) for each fixed z. Show that there exists an even entire
function §(z) which is real for real z and periodic of period 7 such that

B(a, 2)V —y'(a) = 25()W)_4.,(a) a

for all ¢ and z.

PROBLEM 263. If% is a given positive number, let

' — )1 — iz2)
Pk —iz)

Wi(z) =

For every positive number a show that the set of entire functions F(z) such
that F(z)[W(z) and F*(z)/W(z) are of bounded type and of mean type at
most log (4/4) in the upper half-plane and such that

112 = [* 1B Wit e < oo

is equal isometrically to a space J8(E(a)) such that E*(q, z) = E(a, —z)
and E(a, 0) = 1. Show that the hypotheses of Theorem 57 are satisfied for
every index a. Show that the hypotheses of Problems 261 and 262 are satisfied
with a suitable choice of m(t). Show that

a(a)\/—y'(a) = W}_k,o(a)/%
vV —y'(a) = W(0)M,_, o(a)/a.
If f(#) belongs to L2(0, c0) and vanishes in (0, a), show that
TF(2) = 2 [ " fO Wy a(D)]t dt

is an odd element of J¢(E(a)) and that

m YT IFG W la = [ 170k

Show that every odd element of J¢(E(a)) is of this form.
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PROBLEM 264. If J(E) is a given space which satisfies the hypotheses of.
Theorem 57 for some index k, show that a space JE(E,) exists such that ’

(1 + iz/k) [By(2) A(ik) — A,(z)B(ik)] = B(2)A(ik) — A(z)B(ik).

Show that it satisfies the hypotheses of Theorem 57 with £ replaced by
k+ L

An application of the Gauss and Kummer expansions appears in
M. Rosenblum’s theory of the Hilbert matrix.

PROBLEM 265. If » > —1, the Hardy space D, is defined to be the set
of functions F(z), analytic in the upper half-plane, of the form

F(z) = [ e (1)

with f(x) in L2(0, co). Show that D, is a Hilbert space in the norm

112 = [ 1/ 2.

If » > 0, show that a function F(z), analytic in the upper half-plane,
belongs to D, if, and only if,

fo"" fj:: |F(x + i9)|%"1dx dy < oo.

In this case show that the integral is equal to 2727F'(») |[F||2. If ¥ = 0, show
that a function F(z), analytic in the upper half-plane, belongs to D, if, and
only if]

sup f Fx + ip)[2%dx < o0.

y>0

In this case show that the integral is equal to 27 F||3.

PROBLEM 266. Show that the function
I'A + ») (@ — iz)~
belongs to D, if w is in the upper half-plane. Show that the identity
Flwy = F@), ' + ») @@ — it)~1)

holds for every F(z) in D,. (The fractional power is defined so as to be
continuous in the upper half-plane and positive at w.) Show that the

functions
1+iz)”( 2\,
=0.1 ce
(l—iz l—iz) n=01,2"",

are a complete orthogonal set in D, and that the square of the norm of the
nth function is 2!/I’(1 4+ » + n).
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PROBLEM 267. Let % and £ be given positive numbers, and let v = 2k — |,
If f(t) and g(¢) are elements of L?(0, ), define corresponding elements
F(z) and G(z) of D, by

F(z) = [7 e ()de and G(z) = [ tetietg ity
Show that the condition
G(z) = —(22 + DF"(2) — 2(h + ) 2F'(2) — 2i(k — DF'(2) — 2F(z)

for y > 0 is necessary and sufficient that f(¢) be (equivalent to) an absolutely
continuous function of ¢, that f’(¢) be absolutely continuous, and that

g(t) = =@ () + 42 + (& — )t — /()
for almost all .

PROBLEM 268. Let % and & be given positive numbers, and let v = 24 — 1,
If F(z) and G(z) are elements of D, define corresponding functions f()
and g(¢) of ¢t > O by

f(t) = sinh® (t) tanh** (3£)F(i cosh #)
g(t) = sinh® (¢) tanh** ()G(i cosh £).

Show that the condition
G(z) = — (22 + 1)F"(2) — 2(h + 3)zF'(z) — 2i(k — §F'(z) — h?F(2)
for y > 0 is equivalent to the condition

2(h — $)(k — %) cosht + 22 — h 4+ k2 — k4 }
sinh? ¢

gt) = —=f"() +

fort > 0.

S

PROBLEM 269. Let /1 and £ be given positive numbers, and let » = 24 — 1,
Show that

4
[7 - ( 1) Flh — iz, h + iz h 4 k3§ — bt)e—iotds

i1
= 22D (h + k)aPW,_, ;.(a)/a
when @ > 0. If F(z) is in D, and if

k—%
ﬂF(z)—zf Fan @ — 1)~ %( +i) Flh —iz,h +iz; b+ k; 3 — 3)d,
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show that
f+°°| FOT(h— i)l — il (G) 2
7)o [T(3 — iy DL — i)2*T(h + £)]
0 . 3 t—1 k-t
= L |f(it)|2(e2 — 1)* (;:—1) dt,
o FO)I'(k —i)'(}) AR
"f_oo T — )T (1 — it)22T(h + k) dt = If15-

Show that
o 1\k—%
Ji e — (g < 2mrores

for every element f(z) of D,.

PROBLEM 270. If % and £ are positive numbers and if v = 24 — 1, show
that

© — 1 mA-n+k— 2+2v
=

g+ 1 v+ 1
_om '+ I'(m 4+ n 42+ k)
I'o+m4+n+hr4+k+1)

for all nonnegative integers m and n. The generalized Hilbert matrix of
order £ is the infinite matrix with entry 1/(m + n + 1 + k) in the mth row
and nth column, m, n==0,1,2,---. Show that the generalized Hilbert
matrix of order £ is the matrix of a bounded self-adjoint transformation with
bound 7 if k¥ > 0.

58. SPECIAL JACOBI SPACES

Special Hilbert spaces of entire functions occur also in the theory of
Jacobi polynomials. The Jacobi spaces are a variant of the Gauss spaces in
which the imaginary shift is replaced by a real shift. Two real parameters
and % enter into the statement of the identity satisfied by the spaces. The
case k = 1 is of particular interest.

THEOREM 58. Let /& be a real number, and let JO(E) be a given space,
not one-dimensional, such that E*(z) = E(—z). Assume that F(z 4 1)
belongs to the space whenever F(z) belongs to the space and that the
identity
(FE+1) + (b= PIFE + 1) — F(=)]/(} + 1), G())

= (F1), Gt = 1) + (h = PG — 1) — G(=0)/(F — &))
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holds for all elements F(z) and G(z) of the space. Then there exist rea}
numbers p, r, and s such that 1 = s 4 pr and such that

Az + 1) + (k= P4z + 1) — A(=2)]/G + 2) = 4(2)s — B(z)r,
B(z+ 1) + (A — HIB(z + 1) — B(=2)1[(G + 2) = 4(2)p + B(2)s.

Proof of Theorem 58. When F(z) = K(«, z) and G(z) = K(B, z) for some
fixed numbers « and f, the identity reads

F+1)+ ¢—dFE+ 1) —F(=HI/G+ B)
=Gl — 1) + (A — PGl — 1) — G(—a)]/(} — &),
or equivalently,
K@, z+ 1) + (b — [K(w, z + 1) — K(w, —2)]/(F + 2)
=Kw—1,2) + (h — H[K@w — 1, 2) — K(—w, 2)]/(} — @).
But
wlz+ 1 —@)K(w,z+ 1) —a(z4+ 1 —@)K(w — 1, 2) ‘
= B(z + 1)A(w) — A(z + 1)B(w) — B(2)A(w — 1) + 4A(2) B(w — 1)

and

m(z+ 1 — D) [Kw, z 4+ 1) — K(w, —2)]/($ + 2)
—m(z+ 1 —d)[K(w — 1, z) — K(—w, 2)]/(} — @)
= A(w)[B(z + 1) — B(—2)]/} + 2)
— Bw)[4(z + 1) — A(=2)]/(} + 2)
— B()[Aw — 1) — A(—w)]/(} — @)
+ A(D)[Blw — 1) — B(—w)]/(} — ®).
The identity can now be written
Aw){B(z + 1) + (A — )[B(z + 1) — B(—2)1/(} + 2)}
— Bw){d(z + 1) + (b — P[A(z + 1) — A(—2))/G + 2)}
— B(){dw — 1) + (h — H[A(w — 1) — A(—2)]/(} — @)}
+A(2){Bw — 1) + (b — H[Bw — 1) — B(—w)]/(} — ®)} =0.

Since A(z) and B(z) are linearly independent and real for real z, we can
write

Az + 1) + (h = PlA(z + 1) — A(=2))/(} + 2) = A(2)s — B(2)r,
B(z + 1) + (b — P[B(z + 1) — B(=2)]/(} + 2) = A(2)p + B(2)q
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for some real numbers p, ¢, 7, and 5. The identity now implies that

A(z = 1) + (h = PlA(z = 1) — A(=2)]/(} — 2) = A(2)q + B(2)r,
B(z —1) + (h — P[B(z — 1) — B(—2)]/(} — 2) = —A(2)p + B(2)s.

Replacing z by z 4- | in the pair of equations, we obtain

(h—1—=204(z) =[(h — §) — (z+ Hgld(z+ 1) — (z + PrB(z + 1),
(h =1 —=2)B(2) = (z+ $pd(z+ 1) + [-(h — ) — (2 + }s]B(z + 1).

The previous pair of equations can be written

(b + 24z + 1) =[(h — 3) + (z+ $)s14(2) — (z + }rB(2),
(h+2)B(z+ 1) = (z+ PpA(2) + [—(h — §) + (z + Hg)B(2)..

It follows that

(h+ 2 —1—=2)=[(k—3%) — (z+ Dgll(k — §) + (z-+ §)s]
— (z+ §r(z + e
So g=sand | = 5% 4 pr.

PROBLEM 271. In Theorem 58 let A be a solution of the equation 42 —
2As + 1 =0, and let « and » be numbers such that su 4 pv = Au and
—ru 4 sv = Av. If F(z) = A(z)u + B(z)v, show that

Fiz+ 1) 4+ (k= HF(z+ 1) = F(=2)]/G + 2) = IF(2)

and that
lim F(1 + »)/F(y) = 4

Yy—++o0

if ¥ and v are not both zero.

PROBLEM 272. Let J(E(a)) and JC(E(b)) be given spaces such that
JE(E(a)) is contained isometrically in JC(E(})) and E(a, z)/E(b, z) has no
real zeros. If JC(E(d)) satisfies the hypotheses of Theorem 58 for some
number £, if E*(a, z) = E(a, —z), and if J&(E(a)) is not one-dimensional,
show that JC(E(a)) satisfies the hypotheses of the theorem for the same 4.

PROBLEM 273. In Problem 272 assume that the orthogonal complement
of JE(E(a)) in JE(E(D)) is one-dimensional and that E(a, 0) = E(b, 0). Show
that it is spanned by a function F(z) of the form

F(z) = A(a, 2)u + B(a, 2)v = A(b, z)u + B(b, z)v
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where « and v are real numbers which satisfy the hypotheses of Problem 27
for E(a, z) and for E(b, z). Show that 1 = s(a) = s(b) = 1, that p(a) =
r(a) = 0, and that

p(b) = mu[s(b) + 2k — 1] and r(8) = mo[s(b) — 2k + 1.

PROBLEM 274. Let J6(E(a)) and JC(E(b)) be spaces such that
(A(b, 2), B(b, z)) = (A(a, 2), B(a, 2))M(a, b, z)

for some space J&(M(a, b)). If JC(E (b)) satisfies the hypotheses of Theorem 58
for some number £, if E*(a, z) = E(a, —2z), and if J¢(E(a)) is not one-
dimensional, show that J&(E(a)) satisfies the hypotheses of the theorem for
the same choice of 4.

PROBLEM 275. Let {J¢(E(a))}, 0 < a < m, be a given family of spaces
associated with a nondecreasing, matrix valued function

(al) BO)
W“@mw&

so that E(a, z) is a continuous function of a for each fixed z and so that
(A(b, 2), B(b, 2))I — (A(a, z), B(a, 2))] = z fb (A(t, 2), B(t, z))dm(%)

when 0 < ¢ < b < 7. Assume that m(¢) is an absolutely continuous function
of ¢t and that there exists a real number 4 such that JE(E(a)) satisfies the
hypotheses of Theorem 58 for every index a. Show that p(a), 7(a), and s(a)
are absolutely continuous functions of 2 and that

p(@)y'(@) = —5'(a) = r(a)a(a),
p(a)r' (@) + s(a)s'(a) = (2h — 1)s'(a) = —1(a)p’(a) — s5(a)s'(),
whenever «'(a) and y'(a) exist and s(a)? 7= 1. Show that —1 < s(a) <1
for all a and that the quantities

pla) (14 s(@pt o) (1= s@y-
V1 — 5(a)? (1 - s(a)) and Vi— s(a)2(1 + 5(“))

are constant in any interval where s(a)? 54 1. If
Y

lim [B(a, z)A(a, w) — A(a, z)B(a, w)] =0

a0

for all complex z and w, show that lim s(a) = 1 as @ y 0. Show that 2 > 0.

PROBLEM 276. In Problem 275, show that 0 < i < 1 if s(a)2 =1 for
some index a. Show that p(a) = r(a) = 0 at any regular point ¢ where
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s(a)? = 1 and (a, b) contains no singular points for some number b such that
m(a) # m(b). Show that p(a) =r(a) =0 at any regular point where
s(a) = 1.

PROBLEM 277. In Problem 272, show that the domain of multiplication
by z in J&(E(a)) is dense in JO(E(a)) if J(E(a)) is contained properly in

PROBLEM 278. In Problem 272, assume that s(a)* = s(b)* = 1. Let
S(a, z) = A(a, z)u(a) + B(a, z)v(a) where u(a) and v(a) are numbers, not
both zero, which satisfy the hypotheses of Problem 271 for E(a, z). Let
S(b, z) = A(b, Z)u(b) + B(b, 2)v(d) where u(b) and v(b) are numbers, not
both zero, which satisfy the hypotheses of Problem 271 for E(b, z). Show
that
Sla, z + 1) = s(a)S(a, z) and S(b, z + 1) = s(b)S(d, 2).

Show that the mean type of S(b, z)/S(a, z) in the upper half-plane is equal
to o times the difference between the number of zeros of §(b, z) in [0, 1) and
the number of zeros of §(a, z) in the same interval.

59. CONSTRUCTION OF SPECIAL JACOBI
SPACES

These results allow a direct construction of the special Jacobi spaces.

THEOREM 59. Let % be a given positive number, and let «(f) and p(t) be
differentiable functions of ¢, 0 << ¢ < 7, such that

«(t) = tan?1(3) and '(t) = cot?L(}s),

and B(f) = 0. Then there exists a unique family (E(t, z)) of entire functions
of Pélya class, 0 << ¢ <C mr, such that E(t, z) is a continuous function of ¢ for
every z, such that

(4(3, 2), BB, 2)I — (A(, 2), Ba, )T = z [* (A(t, 2), B(t, 2))dm()

when 0 << g < b <7 7, and such that lim E(¢, z) = 1 as ¢ 0 for all complex
z. A space J(E(a)) exists for every a and E*(a, z) = E(a, —Zz). The re-
currence relations
A(a,z + 1) + (A — Hld(a, 2 + 1) — A(e, —2)]/(F + 2)

= Ala, 2)s(a) + B(a, z)r(a),
Bla,z+ 1) + (. — }[Bla, z + 1) — B(e, —2)]/(3 + 2)

— Aa, p(a) + B(a, 2)s(a)
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hold with s(a) = cos a,

pla) = sin a tan?1! (1a), and r(a) = sin a cot®1 ({a).

Proof of Theorem 59. Since fol a(t)dy(t) < oo, the functions E(a, z) exist

by Theorem 41, and E*(a, z) = E(a, —z) by Problem 180. To obtain the
recurrence relations, we introduce the functions

P(a, 2) = (} + 2)4(a, 2)s(a) + (3 + 2)B(a, 2)r(a) + (2 — $4A(s, 2),
Qa, z) = (3 + 2)4(a, 2)p(a) + (} + 2)B(q, 2)s(a) — (h — 2)B(a, 2)

with p(a), r(a), and s(a) defined by the theorem. The equétions

0P(a, z)[0a = —(z + 1)Q(a, 2)y'(a),
0Q(a, 2)[0a = (z + 1)P(a, 2)&'(a)

are a consequence of the formulas

s'(a) = —p(a)y'(a) = —r(a)a'(a),

p'(a) = s(a)o'(a) + 2(h — §)o'(a),

r'(a) = s(@)y'(a) — 2(h — 3)y'(a).
Since

04(a, z + 1)/0a = —(z + 1)B(a, z + 1)y'(a),
0B(a, z + 1)/0a = (z + 1) A(a, z + 1)a'(a),
the expression

Pla, z)B(a, z + 1) — Q(a, 2)A(a, z 4 1)

is independent of ¢. Since lim 4(q, z) = 1 and lim B(a, 2z)/a(a) = z as
a™ 0, lim P(a, z) = & -} z as a " 0. Since the above expression has limit
zero as a N 0, it vanishes identically. Since A(a, z) and B(a, z) have no
COMIMON ZEeros,

S(a, z) = P(a, 2)[4{a, z + 1) = Q(a, 2)[B(a, z + 1)

is an entire function. Since 05(a, 2)/0a = 0, S(a, z) is independent of a.
Sincelim S{a, z) = k 4+ zasa ™\ 0,8(a, z) = % + zforalla. Therecurrence
relations for 4(a, z) and B(a, z) follow.

PROBLEM 279. In Theorem 59 let

D(a, z) = Aa, 2) tan™* (}a) — iB(a, z) cot’* (1a),
O(—a, z) = A(a, z) tan™* (La) + iB(a, z) cot™* (}a)
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for 0 < a < . If f(x) belongs to L*(—a, m) and vanishes outside of some
interval (—a, @), @ < m, show that its eigentransform F(z), defined by

9mF(2) = ﬂ" FRD(, 2)dt,
belongs to JC(E(a)) and that

2m [*7 \F(O)/EGa, )1t = [T |f ()Pt

for every F(z) in J¢(E(a)). Show that every element of J¢(E(a)) is of this
form, Let £(t) and g(f) be elements of L?(—, 7r) which vanish outside of
(—a, a), such that g(¢) == ¢’f(t). Show that their eigentransforms are
related by

G(z) =F(z+ 1) + (h = PF(z + 1) = F(=2)]/(} + 2).
Show that JC(E(a)) satisfies the hypotheses of Theorem 58.

PROBLEM 280. If J&(E) is a given space which satisfies the hypotheses of
Theorem 58 for some number %, & > 1, show that there exists an index ¢ in
Theorem 59 such that the transformation F(z) — S(z)F(z) takes JC(E(a))
isometrically onto JC(E) for some even entire function S(z) which is real for
real z and periodic of period one.

PROBLEM 281, If J8(E) is a given space which satisfies the hypotheses of
Theorem 58 for some number A, A < 1, show that there is an even entire
function S(z) which is real for real z and periodic of period one such that
either F(z) — S(2)F(z) is an isometric transformation of J¢(E(a)) onto JC(E)
for some index a in Theorem 59 or F(z) — §(2)F(z) is an isometric trans-
formation of J&(E(a)) into JC(E) for every index a in Theorem 59.

60. GENERAL JACOBI SPACES

The general Jacobi spaces are analogous to the general Gauss spaces.

THEOREM 60. Let £ and £ be real numbers, (¢ — 1)(k — 1) #% 0, and
let JE(E) be a given space, not one-dimensional, such that E*(z) = E(—z)
and E(0) 3£ 0. Assume that FF(z 4 1) belongs to the space whenever F(z)
belongs to the space and that the identity
(F(t+ 1) + 2k — HE — HIFE+ 1) — F(=0]/E + 1)

~2(h — )(k — DF(t + D/ + 8, G(#)
= (F@), Gt — 1) +2(h — Hk — PIGE — 1) = G(=))/G — 1)

— 2(h — 1)(k — 1)G(t — DJ(1 — 1))
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holds for all elements F(z) and G(z) of the space which vanish at the origin,
Then there exist real numbers « and v such that L(z) = 4(2)u + B(2)v hag
value ! at —1 and such that the identity

R+ 1) + 20k — Bk — HIFG + 1) — F(—01/(3 + 4
— 2(h — Dk — DIFG + 1) — ZOFO)I/(1 + 1, 60)
= (F(t), G(t — 1) + 2k — $)(k — HICE — 1) — G(—)1/(} — 1
— 2(h — 1)k — DIG( — 1) — L(—)G(O)1/(1 — 1)
holds for all elements F(z) and G(z) of the space. There exist real numbers
p, r, and s such that I = s* 4 pr and such that
Az + 1) + 20 — HE — Az + 1) — A(—=2)]/G + 2)
—2(h — 1)(k — )[4(z + 1) — L(2)4(0)]/(1 + 2)
— 2m(h — 1)(k — 1)oK(0, z) = A(z)s — B(2)r,

B(z+ 1) + 2(h — H)(k — §)[B(z + 1) — B(—2)]/(3 + 2)
—2(h — 1)(k — 1)B(z + 1)/(1 + 2)
— 2m(h — 1)(k — 1)uK(0, z) = A(2)p + B(2)s.

These numbers are related by the identity
2hk — 4(h — §)(k — $AQ)u + 2(h — 1) (k — 1) A(0)%u? = A(0)(su — pv).

Proof of Theorem 60. By the proof of Theorem 54 there exists an entire
function L(z), which has value 1 at —1, such that [[/(z) — L(z)F(—1)]/
(I 4+ z) belongs to the space whenever F(z) belongs to the space and such
that the inner-product identity stated in the theorem holds for all elements
F(z) and G(z) of the space. When F(z) = K(a, z) and G(z) = K(f, z) for
some fixed numbers o and f, the identity reads
Ff 4 1) 4 2(h — (& — HIFF + 1) — F(=p))/(3 + )
—2(h = Dk — DFE + 1) — LHFO0)]/(1 + B)
=Gla— 1) + 2(h — H(k — HIGla — 1) — G(—=a)]/(} — &)
— 2(h — 1)(k — D[ — 1) — L(—0) GO)]/(1 — &).
An equivalent identity is
K(w, z+ 1) + 2(h — Pk — H[K(w, 2 + 1) — K(w, —2)]/(3 + 2)
= 2(h — [)(k — D[K(w, z + 1) — L(2)K(w, 0)]/(1 + 2)
=Kw —1,2) + 20k — H(k — PIK(w — 1, 2) — K(—w, 2)]/(} — &)
—2(h — 1)(k — 1)[K(w — 1, z2) — L(w)K(0, 2)1/(1 — ®).
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But

a(z+ 1 — @) Kw,z+ 1) —m(z+ 1 —@)K(w — 1, 2)
= B(z + NA(w) — A(z + )B(w) — B(2)A(w — 1) + A(z)B(w — 1),

m(z+ 1 — @) [K(w, z + 1) — K(w, —2)]/(} + 2)
—m(z+ 1 —d)[Kw — 1, 2) — K(—w, 2)]/(} — @)
= A(w)[B(z + 1) — B(—2)]/(} + 2)
— Bw)[4(z + 1) — A(—2)]/(} + 2)
— B(z)[A(w — 1) — A(—w)]/(} — @)
+ A(2)[Blw — 1) — B(—w)]/(} — @),
w(z + 1 — @) [K(w, z + 1) — L(2)K(w, 0)]/(1 + 2)
—a(z + 1 — #B)[K@w + 1, 2) — L(—w)K(0, 2)]/(1 — @)
= Aw)B(z + 1)/(1 + 2) — Bw)[A(z + 1) — L(2)4(0)]/(1 + 2)
— B()[A(w — 1) — L(—w)d(0)]/(1 — #) + A(2)B(w -+ 1)/(1 + @)
— 7L(2)K(w, 0) + wL(—w)K(0, 2).
It follows that

Aw){B(z + 1) + 2(h — §)(k — §)[B(z + 1) — B(—2)]/(} + 2)
—2(h — 1)(k — 1)B(z + 1)/(1 + 2)}
— Bw){d(z + 1) + 20k — H(k — P[A(z + 1) — A=)/} + 2)
—2(h — 1)k — D[4(z + 1) — L(2)4(0)]/(1 + 2)}
— B(2){d(w — 1) + 2(h — H)(k — PLA(w — 1) — A(—w)]/(} — @)
—2(h — 1)(k — D[A@w — 1) — L(—w)A(0)]/(1 — @)}
+ A(2){B(w — 1) + 2(h — §)(k — P[Bw — 1) — B(—w)]/(} — ®)
—2(h — 1)(k — DB(w — 1)/ — &)}
= — 2a(h — 1)(k — DL(2)K(w, 0) + 2m(k — 1)(k — 1)L(—w)K(0, z).

As in the proof of Theorem 54, we can choose L{z) of the form

L(z) = A(2)u 4 B(z)v
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for some numbers # and ». The identity then reads

Aw){B(z + 1) + 2(h — §)(k — D[B(z + 1) — B(—2)]/(} + 2)
— 2(h — 1)(k — DB(z + /(1 + 2) — 2a(h — 1)(k — DaK(0, 2)}
— Bw){A(z + 1) +2(h — §)(k — HlA(z + 1) — A(=2)]/E + 2)
—2(h — 1)(k — D[4A(z + 1) — L(2)4(0)]/(1 + 2)
— 2m(h — 1)(k — 1)3K(0, 2)}
~ B(2){A(w — 1) +2(h — Pk — H[A@w — 1) — A(~w)]/(} — @)
—2(h — 1)(k — D[A(w — 1) — L(—w)4(0)]/(1 — ©)
— 9m(h — 1)(k — 1)oK(w, 0)}
+ A(2){B(w — 1) - 2(h — ) (k — H[Bw — 1) — B(—w)][(} — ®)
— 9(h — 1)(k — D)B(w — 1)/(1 — @) + 2m(h — 1) (k — 1)uK(w, 0)} = 0.

Since A(z) and B(z) are linearly independent, there exist numbers p, r, and
s, p and r real, such that

Az + 1) +2(h — HEk — HlA(z+ 1) — A(—2))/(4 + 2)
—2(h — 1)k — D[A(z + 1) — L(2)A0)]/(1 + 2)
— 9m(h — 1)(k — 1)3K(0, z) = A(z)s — B(2)r,

B(z+1) +2(h — H(k — HB(z + 1) — B(—2)]1[/(} + 2)
—2(h — 1)(k — D)B(z + /(1 + 2)
— 2m(h — 1) (k — 1)aK(0, z) = A(2)p + B(2)5.

Since A4(z) and B(z) are real for real z, the same formulas hold with s
replaced by 5, 4 replaced by 4, and v replaced by 4. Since A(z), B(z), and
K(0, z) are linearly independent, s, u, and » are real. These equations can
now be written

z(h + z2y(k + 2)4(z + 1) = a(2)4(2) + ¢(2)B(z),
z(h + 2)(k + 2)B(z + 1) = b(2)A(2) + d(z)B(z)
where
a(z) =2(h — )k — Hz(1 + 2) — 2k — )(k — 1)A4(0)uz(} + 2)
+s2(3 + 2)(1 + 2),
b(z) = p2(3 + 2)(1 + 2),
6(2) = 2(h — 1)(k — 1A(0)o(1 + 2) —rz(} + 2)(1 + 2),
d(z) = —2(h — $)(k — $)z(1 + 2) 4 2(k — 1) (k — 1)4(0)u(} + 2)(1 + 2)
+ sz(% 4+ 2)(1 + 2).
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The main identity now implies that

Az — 1) + 20k — Pk — HlA(z — 1) — A(=2)]/E — 2)
— 9k — D)(k — D[A(z — 1) — L(—2)4(0)]/(1 — 2)
— 2m(h — 1)(k — 1)oK(0, z) = A(z)s + B(2)r,

B(z — 1) +2(h — H(k — H[B(z — 1) — B(—2)|/(3 — 2)
—9(h — I)(k — 1)B(z — V(1 — 2)
4 2m(h — D) (k — 1)uK(0, 2) = —A(2)p + B(2)s.

When z is replaced by z + 1, these identities can be written -

(z4+ D —1—2)(k— 1 — 2)A4(2) = d(2)A(z + 1) — ¢(2)B(z + 1),
(z4+ D —1—2)(k—1— 2)B(z) = —b(2)4(z + 1) + a(2)B(z + 1).
It follows that

2z 4+ D+ 2)(h— 1 — 2)(k + 2)(k — 1 — 2) = a(2)d(z) — b(2)c(2).
By comparing the coefficient of the highest power of z on each side, we

obtain 1 = s2 4 pr. The identity now reduces to the identity stated at the
end of the theorem.

PROBLEM 282. In Theorem 60 let A be a solution of the equation A* —
225 + 1 =0, and let U and ¥ be numbers, not both zero, such that sU +
pV = AU and —rU + sV = AV. H F(z) = A(2)U -+ B(z)V, show that

Flz+ 1) 4 2(h — §)(k — DIF(z + 1) — F(—=2)]/(} + 2)
—2(h — 1)(k — D[F(z + 1) — L(IFO)]/(1 + 2)
— 9m(h — 1)k — 1) (U + Vu)K(0, z) = AF(2).

If 52 =£ 1, show that A can be chosen so that F(z) does not belong to J8(E). If
F(z) does not belong to J(E), show that either

lim F(1 -+ )[F(p) =
g+

or
lim F(1 + i5)/F() = A

Y—>-—00
Show that |A] < 1 and that —1 <5 < 1. Show that p and r are positive if
s £ 1.
PROBLEM 283. Let J(E(a)) and JC(E(b)) be given spaces such that

Je(E(a)) is contained isometrically in JC(E(b)) and E(a, z)[E(b, z) has no
real zeros, If JE(E(b)) satisfies the hypotheses of Theorem 60 for some %
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and k, if E*(a, z) = E(a, —z), and if Je(E(a)) is not one-dimensional, show
that J¢(E(a)) satisfies the hypotheses of the theorem for the same % and k.

PROBLEM 284. In Problem 283 assume that the orthogonal complement
of JC(E(a)) in JE(E(d)) is one-dimensional and that E(a, 0) = E(5, 0).
Show that the orthogonal complement is spanned by a function F (2} of the
form

F(z) = A(a, 2)U + B(a, 2)V = A(b, 2)U -+ B(b, 2)V
where U and V are numbers which satisfy the hypotheses of Problem 282
for E(a, z) and for E(b, z).
PROBLEM 285. Let JC(E(a)) and JE(E(b)) be given spaces such that
(A(b, z), B(b, z)) = (A(a, z), B(a, 2))M(a, b, z)

for some space J€(M(a, b)). If Je(E(b)) satisfies the hypotheses of Theorem 60
for some % and £, if E*(a, z) = E(a, —z), and if J(E(a)) is not one-dimen-
sional, show that JC(E(a)) satisfies the hypotheses of the theorem for the
same £ and £.

PROBLEM 286. Let {J(£(a))}, 0 < a < m, be a given family of spaces
associated with a nondecreasing, matrix valued function

_ (=) B(®)
0= (G i)
so that E(a, z) is a continuous function of « for every z and so that
(A(b, 2), B(b, 2))I — (A(a, 2), B(a, 2))] = z f: (A(t, z), B(3, z))dm(t)

when 0 <a <& < 7. Assume that the entries of m(t) are absolutely
continuous functions of ¢ and that there exist numbers 4 and # such that the
hypotheses of Theorem 60 are satisfied for every index a. Show that the
quantities p(a), 7(a), s(a), u(a), and »(a) defined by Theorem 60 are ab-
solutely continuous functions of @ and that

u'(a) = v(a)a'(a) and o'(a) = —u(a)y'(a),

p(@)y'(a) = —s'(a) = 7(a) o’ (a),

p(a)r'(a) + s(a)s'(a) = —r(a)p'(a) — s(a)s'(a)

=4k = & — §)5'(a) — 4(h — 1)(k — 1)4(a, 0)u(a)s'(a)
whenever o'(a) and ’(a) exist and s(a)? 7 1. If

lim [B(a, 2) A(a, w) — A(a, z)B(a, w)] =0

aN 0

for all complex z and w, show that lim s(z) = 1 as 2\ 0.
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PROBLEM 287. Ifs(a) = cos a in Problem 286, show that
B(a, 2)Vy'(a) = fla, 2)
where f(a, z) is a solution of the equation

2%f(a, 2) = —f"(a, 2)
+2(h-—%)(k—%)cosa+h2—h+k2—k+%

sin? ¢
for each fixed z. Show that

fla, 2) = sin (a) tan** (Ja)g(sin? (Ja), 2)

S(a, 2)

where g(a, z) is a solution of the hypergeometric equation
a(l — a)g"(a, 2) + [k + k — (2h + 1)alg'(a, 2) — (B* — Z%)g(a, 2) =0

for each fixed z. Ifk 4 k > 1, show that g(a, 2) is a constant multiple of the
hypergeometric function F(h — z, h + z; h + k; a) for each fixed z. Show
that there exists an even entire function S(z), which is real for real z and
periodic of period one, such that

B(a, 2)V'y'(a) = sin® (a) tan*~* (§a)28(2)F(h — z, h + z; h -+ k; sin® (§a)).

PROBLEM 288. Let % and k be given positive numbers, £ >k — 1. If
0 < a < m, show that the set of entire functions F(z) such that F(z) and
F*(z) are of bounded type and of mean type at most a in the upper half-plane
and such that

172 = il ilF(thn)Iz T2k + n)T(h + k + n)

m §:|F(—h——n)|2 T2k + n)T(h + k + n)
T(h + k2o htn L1 +ml(h—k+1+n

+

is equal isometrically to a space J8(E(a)) such that E*(a, z) = E(a, —z) and
E(a, 0) = 1. Show that J8(E(a)) satisfies the hypotheses of Theorem 60 for
every index a. Show that the hypotheses of Problem 286 are satisfied for a
suitable choice of m(¢). Show that

B(a, 2)Vy'(a) = sin® (a) tan** (3a)zF(h — z, h + z; b + k; sin® ($a)).
Show that
B(a, b + n)A/y'(a)

nl

(et h+k—1) (A +E)

sin® (a) tan®—* (}a) PO+E—12-%) (cos a)
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for everyn =0, 1,2, - - -, where PAH*-L—%) (4} i5 the nth Jacobi polynomia]
of index (A +k — 1,2 — k). If f(¢) belongs to L?(—1,1) and vanisheg
outside of (cos a, 1), show that

1 2\h—} I — oyt 1 1
wF(z)zzfﬁlf(t)(l—t) 2 I_—H) Fh—z,h+ z;h + k3§ — 3)ds

is an odd element of J8(E(a)) and that
m [ 1R B, 12 = [ 1£(8) 12k,

Show that every odd element of JE(ZE(a)) is of this form. .

PROBLEM 289. Let v and o be real numbers, » = ¢ and vo > 0. Let
JE(E) be a given space which is not one-dimensional. Assume that E(z) has
nonzero values at » and ¢ and that the inequality

((t = 9)F(®), ¢ — 0)F() >0

holds whenever F(z) is a nonzero element in the domain of multiplication
- by zin J¢(E). Show that there exists a space JC(E,) such that

(1 = z[)[By(2)4(») — 41(2)B(v)] = B(2)4A(v) — A(2)B(v),
(1 — 2[0)[B,(2)A(0) — 4,(2)B(0)] = B(2)4(0) — A(2)B(0).

Show that the space JE(£;) coincides with the domain of multiplication by z
in J8(E) and that the identity

F@), GW))p, = (I — ¢/n)F(8), (1 — t/0)G(5))

holds for all elements F(z) and G(z) of JX(E;). For each ¢ > 0 let (E())
be a space which satisfies the above hypotheses. Assume that E(z, z) is a
continuous function of ¢ for every z and that the integral equation

(A(b, 2), Blb, 2))1 ~ (A(a, 2), Bla, ) = z [* (A1, 2), B(s, 2))dm(2)
holds when 0 < @ < b <C oo for some nondecreasing, matrix valued function
(a(t) p (t))
m(t) =
p) v

whose entries are continuous functions of ¢. For each ¢ > 0 let

py (p(t) q(t))
{ONR0



Th 60 GENERAL JACOBI SPACES 235

be the matrix with real entries and determinant one given by

[B(t, 6)A(t, ») — A(t, 0)B(t, »)1P(t)
_ (AL, o) B \/(‘, Al v))
- \/E I(B(t, O'))(A(t’ ’V)’ B(t, ’V)) ; I(B(t, ’V) (A(ta G)) B<t> 0))’

ay(f)  Palt)
my(t) =
Br(t)  ya(t)

be a nondecreasing, matrix valued function of ¢ > 0 such that .

Let

my(b) — my(a) = [* P(t)dm(t)P(t)

when 0 < a < b < 0. For each ¢t > 0 let Ey(t, z) be defined for E(t, z) as
above. Show that the integral equation

(4,(b, 2), B,(b, 2))1 — (4,(a, 2), By(a, 2))] = z fb (4;(5, 2), By (1, z))dm,(?)

a

holds when 0 << a << b << o0.

The Jacobi spaces of entire functions are related to Dirac’s theory of the
hydrogen atom. Dirac’s equations of motion are a variant of Maxwell’s
equations for the propagation of an clectromagnetic field. In Maxwell’s
theory the state of the field at any time ¢ is described by a pair of vector
fields, the electric vector E and the magnetic vector H. In standard vector
notation . R R

E =iE,+ jJE, + kE,
and R . R
H =iH,+ jH, + kH,

where E,, E,, E, and H,, H,, H, are square integrable, complex valued
functions of the Cartesian coordinates x, y, z. Maxwell’s equations are

1
—a——E=V><H and lEI——{z—VXE
c ot c Ot

where ¢ is the speed of light and

-0 =
VZla-’*]

o -0
» e

These equations are applied to source-free fields:

V:E=0 and V- -H=0.
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The energy of the field, given by
1 f:f f_*: fj: (E-E+ H-H)dx dy dz,

is a constant of motion.

Maxwell’s equations have an obvious generalization for fields with
sources. For this it is necessary to introduce two new scalar fields, an electric
potential @ and a magnetic potential ¥, which are square integrable,
complex valued functions of x, y, z. The generalized Maxwell equations are

100
I =—V.E
c Ot V- E,

E
lf9—=V><H-}—VCI),
c Ot
lzIj—lz—VXE—f—V‘I",
c Ot
1o
¢ Ot

The energy of the field,
%fj:fj:ﬁ: (OB + E- £ + H- H + VYTP)dx dy dz,

is a constant of motion. A formal proof of energy conservation is contained

in the identity

1 - _
;£(®®+E-E+H-H+‘F‘F)
=V (PE+ E® + E x H—Hx E+ YA + HT).

The wave equation

is satisfied if fis any component ®, E,, E,, E,, H,, H,, H,,'¥ of the electro-
magnetic field.

The Dirac equations of propagation in free space are similar except that
they depend on a nonnegative constant m, which is the mass of the associated
electron in Dirac’s theory of the hydrogen atom. In Dirac’s theory the wave
equations for a free particle are

107 s
¢* O A2
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where 27/ is Planck’s unit of action. Corresponding first order equations for
the field are

lcaa_‘f:v-m%@ww,
lc%f:vXH+V®—%<E+H>,
lc%l_;s_vXE+V‘P‘—£%(E—H),

The energy of the field is again a constant of motjon for this propagation.
The same differential equivalent of the energy conservation law is valid.

In Dirac’s theory the field represents a particle, the electron. The Dirac
equations of propagation are taken to be analogues of Newton’s laws of
motion for a particle in an external field. In classical mechanics a particle
can move under the influence of external forces which arise from a potential
energy function ¥V = V(x, y, z). The same function is used in the quantum
mechanical analogue of the motion. The Dirac equations in the presence
of such external forces are

%%:VxH+V@—%(E+H)—i—:—?,
%%:—VXE—FV‘F—}ZZ%(E—H)_%I:

In what follows, m is treated as a variable which has a limiting value at
infinity equal to the electron mass. The same energy conservation law is
valid for the Dirac propagation in the presence of external forces.

Since the nature of nuclear forces is not known, it is often necessary in
quantum mechanics to treat m and V as arbitrary real valued functions,
subject only to whatever integrability conditions are needed to make the
equations well-behaved. We give a general treatment of forces which possess
spherical symmetry. That is, we assume that m and V depend only on
distance from the origin of coordinates.
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Dirac’s equations can be put in a more compact form using the spin
operators g,, 0,, ¢, which are defined by

MQEH&U_(;Hij—ijH+hJE%
0y(®, B, H,W) = (—j - H,j x E —j¥,j x H+j®,j - E),
0,(®, B, H,¥) = (—k - H,k x E — k¥, k x H -+ k®, % - E).

They satisfy the identities

Oy == 040, = — 0,0,
Oy = 0,05 = — 030,
O, = O0u0, = — 0yOy,

—1 =0l = o2 =02
The operators [ and J defined by
I(®,E,HY)= (Y, H —E, —0),
4+ ¥ E4+ H E—H ¢ -Y%Y
v2 ' wa v5’v5)
commute with the spin operators and anticommute with each other. Dirac’s
equations can be written

ﬂ@ﬂﬂ%:(

1
—E(Q),E,H,‘F) (9, E, HT)
¢ ot
where the operator K is defined by
0 0 0 ime iv
K = I Io 1 —J ——.
TR MR P R
The operators
0 0
L == _— _ 1
@ .y az z ay 20'&)’
0
L,= il 10y,
= x 0 to
I P

commute with K. If

0 0 0 0 0 0
D=1 —
+ aw(y oz °% ) + O‘”( ox az) + Gz( E -7 ax)’

then the operator JD commutes with L,, L,, L,, and K.
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Dirac’s equations are soluble in spherical coordinates 7, 6, ¢, defined by
x =rsinfcosp, p=rsinfsin g, z =rcos .

In this notation

0 xd »d z0

o rox  rdy 1oz’

9 a~~—in -—a——cotﬁcos —a
Yoz F T T % PPk
9 a~ 3—cothin i
w2 %% 7’
9_,9_20
xay Y ox op

We also use the spherical spin operators

g, = 0, sin 6 cos ¢ + o, sin G sin ¢ -+ o, cos 0,
0y = 0, cos 0 cos ¢ 4+ o, cos Osin p — o, sin 0,

g, = —0,sin ¢ -+ ¢, cos .

A straightforward calculation will show that

0 oy, 0
B Y R
and
0 1 Io, D imec iV
K= tofg45) + T2 B

The set of all (equivalence classes of) fields of finite energy becomes a
Hilbert space if we choose the energy of the field as the square of its norm. A
field which is an eigenfunction of D for the eigenvalue £ is said to be a
spherical harmonic of order k. The eigenvalues of D are integers. Eigen-
functions corresponding to different eigenvalues are orthogonal. The
Hilbert space is the closed span of the spherical harmonics it contains.

For the construction of spherical harmonics, observe that every element
of the Hilbert space is the orthogonal sum of an eigenfunction of ¢, for the
eigenvalue ¢ and an eigenfunction of o, for the eigenvalue —i. Since ¢,
anticommutes with ¢,, it takes every eigenfunction for the eigenvalue ¢ into
an eigenfunction for the eigenvalue —:. Since ¢, = o,0,, the action of g,
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coincides with the action of —i¢, on eigenfunctions for the eigenvalue ¢, So
if (0., E,, H,,¥V,) is any eigenfunction for the eigenvalue 7, there exists g
corresponding eigenfunction (®_, E_, H_, ¥'_) for the eigenvalue —: such
that

0,(O,, B, H,W,) =i(D_E_,H , V),

o (O, E L, H ,¥V,)=—(O_E_,H_ V).
Since ¢2 = 62 = —1, it follows that

0O, E_,H ¥ )=iD,E, H,¥,),

Gy(q)—: E_,H_, T—) = (q)—r—, E+: H+» 1Ij.+)
Weuse thisinformation when (O, E,, H,, ¥,),and hence (®_, E_, H,¥),
is a field which depends only on distance from the origin. Consider any
column vector (u+) whose entries are complex valued functions of the angle

variables, 0, ¢, such that
u+((D+> E+> H+’ lP)+) + u—((p—-: E_,H_, \F—)

belongs to the Hilbert space. The condition for this is

2T

I3 7 s (6, @)1 + 106, @) sin 0 b dp < co.

Then the action of ¢,, 0,, 0, on the field produces another field of the same
form with coefficient functions which are linear combinations of « . and u_,
The action of the operators o, 0, 0, corresponds to the action of the matrices

Cob G 6

It is convenient for the moment to identify spin operators with their repre-
senting matrices. In this notation

( icos 0 1€ sin 0)
o,=1{. . .
T e sinf —icosf)’

—isin 0O  ie*® cos 8
0-0 = )

e cos @ isin @

[ J—
Y=\ o )
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We use the eigenvectors of ¢, as a basis for the space of column vectors.
It is easily verified that

(ei“’ cot? (%0)) ,(ei"’ cot? (%0))

Oy =1 s

tan? (16) tan? (36)

(—ew tan? ( 10)) (—e“" tan? (%0))
’ ot? (16) cot* (30) /)’

( ¢'® coti‘ 10\ (—e“" tan? (16) )
%\ tan? 10 /] cott (36) /)’

(—e"f’ tan’} (16) ) B ( e cot? (36) )
%o\ cott (30) T\ tan? (36) /°

( e cott (16) ( ¢ tan? ( )
% cot? 10)

I

\ tan? (10)
(—e“/’ tan? (%6)) ( ¢t cott (36)
¢ =

cot? (36) tan® (}6)
- i(ei“’ cot? (%6)) L l( ¢ cott (% 0)) 0(—2""’ tan? (%9))
¢ 90\ tan* (36) / 2\ tan!(}0) cott (36) )’
0 (—e% tant (16) cot 0 (¢ cot® (16) 1{—¢ tan® (16)
% ae( cott (10) ) ( tant (16) ) + 5( cott (30) )
Oy e cott (30) ( ¢ coté (10) cot (30) (—e"‘” tan® (16)
sin 6 aq;( tan? (16) ) tant (40) ) 2 cot? (30) )
0y O (——ew tan? (;0))
sin 0 9p\ cot? (30)

tan (10) (™ cot? (16) 1{ —¢% tan? (16)
2 ( tan? (16) ) Q( cot? (16) )

An eigenfunction of D for the eigenvalue & is obtained by solving the equation

' cot? (36) —¢' tant (16)
(k= 1)f+( tan® (30) ) k- l)f"( cot? (16) )

ol ) L)

The vector equation is equivalent to the pair of scalar equations

af_ af.
kf, = -——a—é——zcsceT—}— LescOf,

kf_=%];f——ic ——J&—l—zcsc@f+
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If we define
S0, ) =106, @) +if (6, ¢),
S(=0, 9) = f.(6, 9) —if_(6, 9)

when 0 < § < 7, these equations can be written

1; —
39 + dicsc G (—0, )

kf (8, ¢) = z—af—(aoéi) —+ csc

for —m < 6 < u. The energy of the corresponding field is a constant
multiple of

S 7 1706, 9120 dp.
A solution of the equation is obtained of the form
S0, ) = g(O)e=
if g(6) is a solution of the equation
kg(0) = ig'(6) — i(h — }) csc Og(—0).
This equation forms a connection with the theory of special Jacobi spaces.

PROBLEM 290. Let (E(t, z)) be the family of entire functions defined by
Theorem 59 for some number £ > 0. Define ®(a, z) as in Problem 279. If
JS(x) belongs to L(—m, 7) and vanishes outside of some interval (—a, a),
a < m, show that its eigentransform F(z), defined by

9wF(z) = fjﬂ FODE, 2)dr,
belongs to J8(E(a)) and that

o [ VP (B, 05 = [* | £ (o).

Show that every element of J(E(a)) is of this form. Let H be the trans-
formation defined by

Hif () — g(x) = if"(x) — i(h — 3) csc xf(—4)

whenever f(x) is (equivalent to) an absolutely continuous function which
belongs to L*(—, ) and g(x) belongs to L¥(—m, m). If f(x) and g(x) are
elements of L*(—ar, o) which vanish outside of (—a, a) and if F(z) and G(z)
are their eigentransforms, show that G(z) = zF (2) is a necessary and
sufficient condition that f(x) be in the domain of H and that H: f(x) — g(x).
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Show that
A(a, z) = cos® (Ja)F(h — z, h + z; k; sin? ({a))
and
B(a, z) = sin?* (La)(z/h)F(h — z, h + z; h 4 1; sin? (§a))

for0 <a <

PROBLEM 291. Let % be a given positive number. If 0 < a <7, let
(@) be the set of entire functions F(z) of bounded type and of mean type
at most g in the upper and lower half-planes, such that

IF|2 = 3 [F(h + n)2T(2h + n)[n! + > |F(—h — n)|*T'(2h + n)[n! < 0.
n=0 n=0
Show that JAG(a) is a Hilbert space of entire functions which satisfies the
axioms (H1), (H2), and (H3) and which contains a nonzero element. Show
that AG(a) is equal isometrically to a space JC(E;(a)) for some entire function
E,(a, z) such that E¥(a, z) = E;(a, —z). Show that E\(b, z)/E\(a, z) is of
bounded type and of mean type & — ¢ in the upper half-plane when 0 <
a < b << . Show that the intersection of the spaces J(E,(a)), 0 < a <,
contains no nonzero element. Verify that JC(E;(a)) satisfies the hypotheses
of Theorem 58 for every index a. If the spaces J(£(a)) are defined as in
Theorem 59 for the present choice of %, show that there exists an entire
function §(z), which is real for real z and periodic of period one, such that
F(z) — S(2)F(Z) is an isometric transformation of J¢(E(a)) onto JE(E,(a))
for every index a. Show that Ej(a, z) can be chosen so that FE,(a, z) =
S(z)E(a, z) for every a. Show that §(z) is an even entire function of Pélya
class which has no zeros. Use this to show that §(z) is a constant. Show that

®@(a, h) = ¥ [sin (3a) cos (3a)|*?
and that
|7 10, mppd — 20 (i T(2h).
Show that
S(z) = Vu|T(h).

Since JD commutes with K, the eigenfunctions of JD are more convenient
than the eigenfunctions of D for solving Dirac’s equations. The two are
closely related since J and D commute. The eigenvalues of J are 1 and —1.
Every element of the Hilbert space is the orthogonal sum of an eigenfunction
of J for the eigenvalue 1 and an eigenfunction of J for the eigenvalue —1.
The eigenvalues of JD are integers. The Hilbert space is the orthogonal
sum of eigenfunctions of JD. Eigenfunctions of JD can be obtained in the
form

(O, E, HY) = ru (0, ) (0, E,, Hy, Y, +r (6, ¢) (O_,E_,H V)
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where u, (0, ¢) and u_(, ) are complex valued functions of the angle
variables and the fields (&, £, H,, V,) and (®_, E_, H_,¥_) depenq
only on distance from the origin. The fields can be chosen so that

Jo (O, B, Hy W) = —e9(O_, E_, H_,F.),.

If such a field is an eigenfunction of JD for the eigenvalue &, the Dirac
equations read

19
((Dﬂ:’ Ey,Hy, ¥y)

8 IoJ .
= (@, E,H,Y (©, E,H,, Y,

o or

imed iV
= (@, ELH ¥V, — P (., EL, Hy, ).

We now drop subscripts in working with the radial equation. Since Is, and
J anticommute, the radial equation has solutions of the form

(®, E, H, ) = £,(r, )(®,, E,, H, W) + f(r, ) (O_, E_, H_, ¥ )

where (®,, E,, H,,¥V,) and (®_, E_, H_,¥_) now denote constant fields
such that

J(Dy, Ey, Hy, W) = (P, E,, H,, W-r);

JOL,E H ,¥Y )= —(0_,E_ H V),

IG‘,.((D_,_, E., H,, IIj'+) =i0_,E,H, \F—)a
Io (®_,E_,H ¥) = —i((I)_H E ,H, ‘F_,_).

The Dirac equations reduce to the pair of scalar equations

1o _ Lo 14

"(} ._a_t— ar + f + f+ (,' f+>
1o . of, | ik ime iV

o e Ty TR R

The energy of the field is a constant multiple of

fow |f(r, 0)]%dr + fow | f_(r, t)|%dr.

These equations can be simplified by a change of variable if m is a
differentiable function of . Let

gu(r, t) = fi(r, £) cos w — £ (r, £) sin w,
g_(r, 8) = fi(r, t) sin w + f_(r, t) cos
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where o = w(r) is a differentiable function of 7 such that
(melR) cos (2w) = (kfr) sin (2w).
Define
glr, 8) = gy (r, t) + 1g_(r, 1),
g(-—?‘, t) = g+(7‘, t) - ig—(’} t)

for r > 0. A straightforward calculation will show that the radial Dirac
equations reduce to the single equation

l ag(r> t) . ag(r, t)

T T i P ) + el )

where
§(0)? = (mefR)® + (kfr)?
and
con Vo (k) (mc[R) - (mo[R)(K[r")
O‘(f)——-gé—l— 2,3/(7’)2 .

The theory of Jacobi spaces suggests that the radial Dirac equation may be
associated with special Hilbert spaces of entire functions. But as yet no
interesting special spaces have been obtained by this method.

6. CONSTRUCTION OF LOCAL OPERATORS

Hilbert spaces of entire functions have applications in Fourier analysis.
If K(x) is a Borel measurable function of real x, define a corresponding
operator K(H) on absolutely convergent Fourier transforms

Sl = [T e=tau(e)
by K(H):f(x) — g(x) whenever
o) = [ =K (B)du()

is an absolutely convergent Fourier transform. For example, if K(x) = x,
the operator K(H) = H is minus ¢ times differentiation. The formula

B —
o) = tim LD 2T
h—0 ih
which is equivalent to the formula

eiht _

[7 et dp(t) = tim [T

twty o 1),
Lim o ¢t du(l)
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is justified by the Lebesgue dominated convergence theorem since
it |

tht

<1

for all real numbers 4 and ¢ If K(x) is any polynomial in x, the operator
K(H) has a similar interpretation as an ordinary differential operator.
Differential operators are examples of local operators.

An operator K(H) is said to be local if whenever two functions f,(x) and
JS2(%) in its domain agree in a neighborhood of a point x,, then K(H) ;f;(x) —
g4(x) and K(H):f,(x) — g5(x) where the functions g,(x) and g,(x) agree at
%o The domain of any operator K(H) is a vector space and K(H) is linear.
An equivalent condition for K(H) to be local is obtained on setting f(x) =
Jalx) — filx) and g(x) = gy(x) — gy(x). Whenever a function f(x) in the
domain of K(H) vanishes in a neighborhood of a point x,, then K(H) ;f(x) —
g(x) where g(x) vanishes at x,. Note that an operator K(H) commutes with
translations. If K(H):f(x) — g(x) and if % is a real number, then f(x — &)
is in the domain of K(H) and K(H):f(x — k) — g{x — k). So a simple
condition for K(H) to be local can be given: Whenever a function f(x) in
the domain of K(H) vanishes in a neighborhood of the origin, then
K(H):f(x) — g(x) where g(x) vanishes at the origin.

Let a be a given positive number. The operator K(H) is said to be
a-local if it satisfies this condition: Whenever f(x) is in the domain of K(H)
and vanishes in the interval [—a, a], then K(H):f(x) — g(x) where g(x)
vanishes at the origin. An operator K(H) is local if, and only if] it is a-local
for every positive number a. The theory of a-local operators is related to the
theory of entire functions which are of bounded type in the upper and lower
half-planes.

THEOREM 6l. Ifais a given positive number, if K(z) is an entire function
which is of bounded type in the upper and lower half-planes, and if

exp (—ay)K(Y)
is bounded, — o < » <C 0o, then the operator K(H) is a-local.

Proof of Theorem 61. If f(x) = f+°o ¢®'du(f) is in the domain of K(H),
consider the function o
v K() — K(2)

—® It — z

L(z) = | (1),

which is entire by the proof of Theorem 26. Since the functions

[r ) g 1o KOdul)

—©f—z —w© -z
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are of bounded type in the upper half-plane by Problem 65, and since K(z)
is of bounded type in the upper half-plane by hypothesis, L(z) is of bounded
type in the upper half-plane. A similar argument will show that L(z) is of
bounded type in the lower half-plane. Since

gihtg—ihs __ |
it — 2)

and since f(x) vanishes in the interval [ —a, 4], we obtain

ko .
f gzute—zuzdu ——
0

ihtg—ihz —1

oSt = [} ]2 o

— 0

when —a < & < a. The change in the order of integration is justified by
absolute convergence of the double integral. It follows that

f+°° ¢MK () — ™K (z)

—o i — z

eMeL(z) = du(t)

when —a < h < a. A consequence of the identity is the estimate

L) < 1517 [ 1K@ du@)] + 1217 K@) [ 1)l

Since we assume that ¢"K(ip) is bounded, £ = a and ~ = —a, we can
conclude that L(z) goes to zero at both ends of the imaginary axis. By
Problem 39, L(z) vanishes identically. If K(H): f(x) — g(x), then

¢(0) = [ K(@tdu()
fﬂo K(Odp() rw K()du()
t— z -0 f—z
_ f+oo tK(t)du(?) — K (2 )f—l—oo e d (1)

t— z t— z

when z is not real. By the Lebesgue dominated convergence theorem,

. w e % du(t) to

Jim — gy [T° 2 it (f) = 0

Jim = [17 T = [Tt = o0
o LK (D) du(t

lim f+ (H)du(?)

— = 0.

Yy—++oo

It follows that g(0) = 0.
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62. DETERMINATION OF LOCAL
OPERATORS

A local operator is determined by an entire function if its domain
contains a function which vanishes in an interval and which does not vanish
identically.

THEOREM 62. Let g be a given positive number and let K(x) be a Borel
measurable function of real x such that the operator K(H) is a-local. If the
domain of the operator contains a function which vanishes in the interval
[—a, @] and which does not vanish identically, then K(x) is the restriction
to the real axis of an entire function K(z) which is of bounded type and of
mean type at most a in the upper and lower half-planes.

Proof of Theorem 62. By hypothesis there exists a function
+o0
Sl = [ e, )

in the domain of K(H) which vanishes in the interval [—a, 4] and which
does not vanish identically. Let

F) = [ e B(o)du()

where u is a nonnegative measure and B(x) is a Borel measurable function
having absolute value 1 everywhere. Since f(x) vanishes in the interval
[—a, a] and does not vanish identically, the closed span of the functions
¢, —a < h < a, is not all of L'(u). Since f(x) is in the domain of K(H),
K(x) belongs to Ll(u). The hypothesis that K(H) is a-local implies that

f:roo K(t)C(#)du(t) = 0 whenever C(x) is a bounded measurable function
such that f e C(f)du(t) = 0 for —a < x < a. Since every continuous
linear functional on L(u) is of the form F(x) — fjw F()C(t)du(t) for some

bounded measurable function C(x), it follows from the Hahn-Banach
theorem that K(x) belongs to the closed span in L1(u) of the functions ¢,
—a < h < a. To study the closed span we introduce the majorant

M(z) = sup |L(2)]
where the supremum is taken over all finite linear combinations of the

functions ¢, —a < h < a, such that f [IL($)|du(t) < 1. We show that

the supremum is finite.
If I(z) is such a linear combination, then

[om HOBOL) _ ) e BOAuY

- I — z —o  f—z
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when z is not real, by the proof of Theorem 61. It follows that

L) 182 <17 [T L@ dp()
where
[r= B0

t— z

S(z) =
By the arbitrariness of L(z),
M(z) 1S(2)] < I

Since f(x) does not vanish identically, u is not the zero measure. By the
Stieltjes inversion formula, )

yf+oo B(8)du(t)
(t— x)% 4 »?

does not vanish identically for y > 0. It follows that S(z) does not vanish
identically in the upper and lower half-planes. Assume for definiteness that
the function does not vanish identically in the upper half-plane. Let y; > 0
be chosen so that S(x + iy) # 0 for —oo < x < oo. Since §(z) is of
bounded type in the upper half-plane by Problem 65, we have

[ (1 o)t log* 11t + ip)ldi < o0
by Problem 27. Since

M(t + ipy) < |27 118 A+ o)l
we obtain

[ (1 + @)t logh M(t + in)dt < .

Since L(z) =1 / f+°° du(t) is a finite linear combination of the functions

¢, —q < h < a, such that f:rw |L(t)|du(t) <1, we can conclude that
+o©
M(z) =1/ [T due)

72 (1 + )72 llog Mt + im)ldt < co.

and that

But if L(z) is a finite linear combination of the functions ¢, —a <% < a,
then L(z -+ ip)) is a function of bounded type and of mean type at most a
in the upper half-plane. By Problem 27,

)’1| f+°0 log |L(t 4 1y)|dt
(¢ - %)% 4 (92 —n)®
J’1|J'+°° log M(t + iy,)di
(¢t =22+ (32 —2)*

log [L(x + 9)| < a|ye — 4l +

< alys — il +
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when y, > ;. A similar argument will show that the inequality holds when
s <. By the arbitrariness of L(z),

: — w  log M(t + iy)dt
log M(s + ) = alps — |+ 22 [ 08 LA D0

t— %)%+ (32 — n)?

when y, # 3;. By the semigroup property of Poisson kernels we see that
the same estimate holds with y; and p, interchanged. For the integral
then appearing on the right is absolutely convergent and the previous
argument applies with y; replaced by y,. From this we see that M(z) is
finite and locally bounded in the complex plane. )

Let (L,(z)) be a sequence of finite linear combinations of the functions
e, —a < h < a, such that K(x) = lim L () in the metric of L*(u). Since
the sequence is Cauchy in the metric of L!(u) and since

ILu(2) — Lo(2)] < M(2) [*7 11,0 — L,()]du(t)

for all complex z, H(z) = lim L, (z) exists uniformly on every bounded set.
The limit is an entire function such that H(¢) = K(¢) almost everywhere
with respect to u and such that
+o
|H(2)] < M(2) [ |HOlp()
for all complex z. Since
I2l (4o logt M(i)dt
log M(z) < - —_—
og M(z) < alsl + = [T 2

for y # 0, we see that H(z) is of bounded type and of mean type at most a
in both half-planes.

To see that H(x) = K(x) for all real x, consider any nonnegative measure
@’ on the Borel sets of the real line such that y < 4’ and

{771+ [K@)dw' (1) < oo.

Then there exists a Borel measurable function B’(x), which is bounded by 1,

such that
+o

Sy = [T B (1)du' (1)

for all real x. Let

M’(z) = sup |L(z)]
where the supremum is taken over all finite linear combinations of the
functions ¢, —a <k < a, such that [ |L(5)|du'(t) < 1. Since u < i,

M'(z) < M(z) for all complex z. The above argument will show that there
exists an entire function H'(z) such that K(x) = H’(x) almost everywhere
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with respect to g and such that
. - ; tean . '
V()] = M (2) f_‘ LK (8))dp’ (1)

for all complex z. There exists a sequence {L(z)) of finite lincar combina-
tions of the lunctions ¢, —a = A = g, such that H'(z) == lim L {z) for all
complex z and such that K(x) == m [ (x) in the metric of L1(x). But then
K{x) = lim 1 {x) in the metric of L4 g) and 0 — lim {L! (%) — L _{x)]} in the

metric of L), Since
El2) = La(2)] = M(z) |

for all complex z, we obtain H'{2) = H{z) for all complex z in the limit as
!

"o

|L, (1) — L, (t)idu(t)

—m

can be chosen with positive mass at any piven point, K(x) = H(x) for all
real x. ’

463, NONVANISHING FOURIER
TRANSFORMS

There also exist local operators whose domain contains no function
which vanishes in an inteeval and which does not vanish identically.

THEOREM 63. Lot K{x) be a continuous function of real x such that
K{x) =}, log K(x) s uniformly continuous, ang
poo
f (U =L log K()dt == oo,
it

Then therg is no nonzere measure ¢ on the Borel sets of the real line such
that

J 17 K lp() < oo

-t

and such that
J."'m it (£

—on

vanishes in an interval,
Proaf of Theorem 63, Let a o= 0 and let
T(x)y = T (x) = sup JL(x)]|

where the supremum is taken over all entire functions L(z), which are of
bounded type in the upper and lower halfplanes, such that

exp (~a |p])L(i)
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is bounded, --eo <y < oo The proof. depends en a lower estimate of
T(x). By the uniform continuity of log £(¥), there is some € = 0 such that
liog Kl — log K(x)| =7 ¢
whenever |8, — x| = bra. Then
[bog K(xg) — log K{x))| = ne

when |xy - %] = dorna, roae 1,2, 3, -0 The function

i oa(z - "ﬁ))}"‘
Iz = [2&(3 e ) s Y

is bourled on the real axis with bound (37)7, and it is bounded by 1 on the
set |x - xy| = bwna. Tt follows that [L{x)| = 7{x) for all real x if

ne -+ nlog (bn) = log K(xy).

In this case, L{z) is one of the entire functions in the supremum definition
of T(x). Since it has value (d7)* at x,, we obtain

log T(xg) i nlog (§7)
when 7 I8 so chosen. By the arbileariness of 2 and x,,

o T(s) 2 = i o Kie) — log (4

for all real & "Fhe hypotheses on 7'(x) now imply that

J'"'*" (04 Y logt T(8ydl s= o0,

e Ar)

To prove the theorem it iy sufficient to show that there is no nonzero
measure g on the Borel sets of the real line such that

l-*:, K(t} |dﬂu(f)| <o
and such that

l._,. ) ei”-'t(f.“‘ (t)

i
vanishes for --a = x = a. Argue by contradiction, assuming that such a
measure exists, Let

M(z) = sup |L{z)]
where the supremum is taken over all finite lincar combinations of the
functions £, —g = A = a, such that

fi: L)) = 1.
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More generally, consider any entive lunction L{z) which is of bounded type
in the upper and lower hall-plancs, such that exp {—a |3 L00) & bounded,

— o =l p =D . By Theorem 61 the operator L{H) is g-local, By the prool
of 'Theorem 62,

for all complex z. By the arbitraviness of L{z),

1) = Mx)

for all real x where
[ s st togh sy ds =

by the proof of Theorem 62, Sinee we know that T(x) cannot be this small,
DO SUCh MEeAsuUrs § GATL CXist.

PROBLEM 292, If u(2) is the real part of a function analytic in a regton
containing the closed rectangle @ = x = b, ¢ =0 = &, show that

& azt)}
J J[(Bx) | (8}' ddx dy
Jf i a;vciud\clfula—}—t)a(b¥u)rl
J ol o i) ay( ¥ F Py

" i) 3‘; (d 4 ixyis — [ uga 1 iy) S-; (a -+ iv)dy.

PROBLEM 293. Lot f(z) be a function analytic in a region containing the
closed c‘mrmlu sectlom @ o r 2 b, ¢ 0 = d where (<2 q =0 b =0 w0 and
0 =e 22 U 7Y e () | {2y where w(z) and e(z) are real

valued [unu.mnh, show ttmL

& o
AT + (G e
s {7 oty % ey 1 | ugbert 2 ey
@ a)‘ & af)

ﬁ u{re™) %’_ (reydr — J'.'x w(as™®) gg (ae*")d0.

PROBLEM 294. Let f(z) be a function which is analytic and whose real
part is nonnegative in the upper hall-plane. 1f

Re fz) == p -I- J ‘m_:,.;'_)ﬁﬁ'__
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is the Poisson representation, show that

i}

e
e Re f(ily = p -+ = [ Wf)

i w

¢4. BEURLING-MALLIAVIN THEOREM

A theorem of Beurling and Malliavin gives infermation about the
domain of local operatars on Fourier transforims,

THEOREM 64, Let F(z) be an entire function which is of bounded type
in the upper and lower half-planes. If @ = 0 is a given number, there cxisty
a nonzero entire function G(z), which is of bounded type in the upper and
lower half-planes and of mean type at most @ in these half-planes, such that
F(z)G(2) and G{z) are bounded on the real axis,

A Hilbert space method is usedto prove the theorem,

LEMMA |1, If £{z) is an entire function of Pélya class which has value |
at the origin and which is bounded away from zero in the upper hall-plane,

then

whete f(2) is analytic in the upper half-plane and continuous in the closed
half-plane, and the derivative f/(z) belongs 10 the Hardy space Iy

wl G = [ [T ) 2 oo

LEMMA 12, Let/(z) be afunction which is analytic in the upper halt-plane
and whose derivative £/(2) belongs to 0. If ¢ = 0 is a given number, there
exisls a function g(z), analytic in the upper half-plane and with derivative
g'{z) in 1y, such that

Re zglz) = Re zf{z)
and

Reisg' (2} = —a

for p = Q. 1S

Pl
and if
lim inf Re ¢/ (iy) o= o oo,
el
then Re ig(z) has a lower bound in the upper half-plane and
7 = lim inf Re fg{re'?)

uniformly for 0 = 0 <
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Proof of Lemma 11, As in the proof of Theorem 15,

B () yJ‘,.w dp(h)

{t — x)w
for y = 0, where p(x) is the phase function associated with F(z) which has
value zero al the origin, Since £(2) is bounded away from zero in the upper
half-plane and has value | at the origin, we can write F(z) = exp [2/{2)]
where £{z) is analytic in the upper half-plane and continuous in the closed
hatf-plane. Let f{&) == w(z) -} iv(x) where u{z) and o{z) are real valued
functions. By Problem 293,

LIAG) + il

= [* u(aoisy + [ u(f;fm) (ﬁgm);w
o ‘r:;' ull)do(t) — f w(we'?) ;3; (et®)df)

when 0 = a0 <2 f < oo, Since r(Qu/0r) == 8u/90, the identity can be written

ff”u (re?) |2nzuzo—j’u ydu(t) - |f L0

d T 4 m
4 18 —f u{ et 5l — La —f u{ae'?)2d6.
“'{z!f)’u (Be) 7 Jo 1(2e”)
Binee there exists a number ¢ = 0 such that ¢ - log |Z(x)] is nonnegative
and since @(x) == ~-xr(x) is nondecreasing,

pe + log ()| q’(f)

z2

¢ + log [B(1)] ¢ () o dp(t) —az dp(4)
EJ g R T‘“ A e .L v ""“J‘...‘,,T“

di

J LF (e |y dr dl)

iz 1o o 102
+ 3 zﬁJ w( ety rdD) - ﬁmdmfu w(o®)2d0),
We show that
d e .
. T b e 0y g -
bm infr m fu ul(re' Y50 = 0

P

If this were not true there would exist some € = 0 such that

fj r
— NS g
Tdrjn u(re™efl =
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lor all sufficiently large values of r, a condition which implics that

limn J" u(ret) 20 = oo,

P
This is impossible because F(z) 15 of exponential type by Krein’s theorern,
Problem 37. 8o as §f —» oo we obtain

. ) pe e F log LR(O] o8
[ [ 1 e a0 = [ CHIRTWI00
—z ¢ log |E e di(l) —a dip(t)
2= SRR el By
d ry iz
fo ;fc' -Jf) H(':{l:-' ) 0.

The integrals are finite because
J“*"" (1 - 12y~ ogh |F{0)dt = oo
by Problem 27, because
lim sup (Y x < e

|us] ¥ e

by Theorem 15 and because

[7 s map) < o

bry the Polsson ropresentation of Re i (z2)/57{2).
Progf of Lemma 12, Let A6 be the set of all functions g(z), analytic in the
upper hall-plane and with derivative g'(z) in iy, such that
Re zg{z) = Re 2/ (2)
for » == 0 and such that

lim Re [if(i) — ig(i)] = oo.

'

T'he existence of the lmil is a consequence of the Polsson representation of
Re [2/{z) ~ zg(z2)], Problem 294, "The set M s not empty since it containg
S(2). Define

e @

where the infirmum is taken over all elements g{z) of M. We show thal the
infirmum is attained by an element of AL Let (g,(2)) be a sequence of
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clements of M such that

& (2) I} 4 22 lim Re [i() — dg,(@0)] = m + 1n
W 0

for every n. By applying the Helly selection privciple in the Polsson repre-
sentation, we can choose the sequence so that

lim Re {zf{z) — zg_ ()]

A=k O

exists for » = 0. Since we can add a real constant to g, (2) without changing
the above conditions on the functions, we can choose the sequence so that
g{z) = lim g, (2} exists [or » == 0, Convergence is uniform on any bounded
set al a positive distance from the real axis, The limit function is analytic
in the upper half-plane, the real part of 2£(z) — zg(2) is nonnegative in the
hall*plane, and

lim Re {370 — dg(d)] = lim inf Hm Re [i/(i) — (4]

W0 P 7w )
Since g'(z) = lim g (2} exists uniformly on any bounded set at a positive
distance from the real axis,

jw [': le' (% 4 0)|%dx dp == lim inl‘fnm fl: la0 (% o1 ) |%dx .

wa N

80 gz} belongs to MG and is the required minimal element. We show that it
has the desived properties.

Consider the function A(z) = 48/(@& — 2) [or any fixed number w in the
upper  half-plane, Since Re z8(2) = 0 and since M(z) = {wof(@ — 2)*
belongs to )y, the function ¢{2) 4 A(z) belongs to M for every positive
number 4. Since

lim Re dh(fy) v -1,

A ()
the inccuality

o' (2) - M=) BE + 2a lim Re [iF(Dy) — igliy) — {AR(i)]
W

=l ()] -k 2a lim Re [if(fy) ~ dg{in)]

't (
implics that
Re{g'(z), M{2)h & —a

By Problem 266 the inequality reacs

Re qwg'(w) & e
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A consequence of the Poisson representation is that

p = lim Re [if(B) — ()]

L
exists ag a finite limit and that the real part of zf(z) — zg(z) -+ #pz is non-
negative in the upper halfeplane. By the minimal choice of g{(z), p = 0. It
follows that
lim inf Re dg(ip) = lm inf Re if (&) = v = —oo.

= Wer

Il we define

L
[ vydr = mhg (22 = oo,
Since
De(re'™) [0 == g [re)iret?,
we obtain the estimate
Lalir) = glre®)} = V(?’}\/ﬁ'ﬂ‘
for O = 8 <2 . Since

Redir delre™)]or = Re iz’ (2) = —a,
we have also
Re du(r e = Rede(re™®) b alog (rafry)

when 0 = ry <2 ra <2 oo I ¢ = 0 s given, choose ry = rp(e) == 0 so large
that

i [ i< &

and so that
Reigiit =7 ¢

when # = 7y If ™ i3 o point in the upper half-plane such that

Reig(re®) = 7w 3e,
then
Re fg(re®) =7 — 2¢

-

when ry =7 =

o ry if 1) 15 chosen so that

a log (ryfr)) = e
Then ry = rg, for otherwise

= ViV b
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forr =r = ryand

& e g2y ‘J'ﬁ it = bara [w V(r)ysrtdr,

T o'y
which is contrary to the choice of ry. Since

the set of points z such that Reir(z) 2 » — 3¢ is bounded.
A similar argument will show that
lim inf Re ig(ip) = lim inf Ref(ip) = — o
Wi w
and that
lim inf Re ig{r™®) o hm inf Re io{ip)
P P}

uniformly for 0 <2 § =2 7. Since Redg(z) has a lower bound on cvery
bounded set which lics at a positive distance from the origin, it is bounded
below in the upper hatf-plane.

Proof af Theorem 64, Since we can mulliply F(2)} by a nonzero constant
without changing the hypotheses or conclusion of the theorem, we can
assiune without loss of gencrality that [F(OY < 1, The entire function

F()F*(2) 4 1 — F{O)F(0)

is real for real 2, it &5 of bounded type in the upper half-plane, and ¢ ig
bounded away from zero on the real axis. By Theorems 8§ and 13, it is of the
form E(z)].'f*(z) for some entire function F{z) such that |[E{x - i) =
[#(x + )t fory == 0. Since K(z) can be multiplied by a constant of absolute
value 1, it can be chosen so that 20} == 0 and hence so that F({) == 1, Since
L(z)E*{z) 1s of bounded type in the upper halfeplane and since £%(z)/25(2)
is bounded by | in the half-plane, Z1(2) is of bounded type in the half-plane,
By Problem 34, £{z) == K(z)[1 iz of Pdlya class. Since f(z) is bounded away
from zero on the real axis, it Is bounded away from zere in the upper half
plane, Since

for all real &, it is sufficient to choose G(z) so that F(2)G(2) is hounded on the
real axis, By Lemma 11 (with a change of sign)

E{z) = cxp [ 2f{2)],

where f(2) is analytic in the upper half*plane and f"(z) belongs 1o Dy Tt
fullows from the Poisson representation of log |£{z)| that ‘
fog | £i(y)|

Broinf Re 70y == - lim sup ——== s ¢ = — 20
Y U i by
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and that

1 (i
tm inf Re if (iy) == -l sup Loy 1551 I — .
F

b/t 1} =
By Lemma 12 (for a larger cholee of @), there exists a function g(z), analylic
in the upper halfuplane, such that

Re zg(z) = Re zf(2)
for y == 0, such that

Rei[zp(2)] = Redze'(z) + Reidglz) =7 —a

outside of some bounded sct, and such that Re if2¢(2)]" has a lower bound

in the upper half-plane, Since
. . ; 1w
R iflog (1 - 12y ] e ——=— = 0
[ I 2 ( l?).l |1 o ;zlg

Rei[ze(2)}) -1 r Redflog {1 — {i2)] =7 -4
for y = 0. If
W(z) = (1 iz)" exp [2g(2)] exp (irz - iaz),
then Bz} is analytic and without seros in the upper hall-plane,
ez W)} = |(1 -~ iz} exp (ir2 - 1az)|

fovy = 0, |W{x -}- 99} is a nondecreasing (unction of » = 0 for each fixed »,
and
i sup y-1log | WD) = a
s

Tt foliows that WW(z) is of bounded type in the upper hall-plane and of mean
type at most 4,

By the proof of Theorem 15 there exists a function 75{z) of Pdlya class,
which is real lor real z, such that

Re [Ey{z)|W(z)} =0

for y = 0. As in Problem 33, it follows that {I — iz}=2H (z)/W(z) Is
bounded on every horizental ling in the upper halfplane, Since (1 —
iz) (2B (2) is then bounded on every horizontal line in the upper
half-plane and sinee L(2)40,(2) is of Pétya class, the ratio is bounded on the
real axis. Since Wz} is of bounded type and of mean type at most g in the
upper half-plane and since the real part of £ (2)/W{2) is nonnegative in
the upper halfiplane, K (2) is of bounded type and of mean type at most 2
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in the u}ﬁp(‘.t" half-plane. I £(2) has r -+ 2 zeros wy, -+ - | w,,,, then
By(@) = G()(z o )+ {2 = w,,)

where G(z) Is an entire function of Pélya class, which is of bounded type and
of mean type at most @ in the upper halC-plane, such that £(2)G(z) is bounded
on the real axis, If £,(2} does not have this many zeres, thon

Ly (2} = P(z) exp (--ihz)

where £(z2) s a polynomial of Pélya class and 0 = & =2 4. In this case the
desired function G(2} is obtained with

G(z) == gin {az)/Q{2)

where 42) is a polynomial whose zeros are contained in the zeros of sin {az)
and whose degree is 7 - 2 minus the degree of P(z).

PROBLEM 295,  Let JE(Z(h)) be a given space such that Z(4, 2) is of Polya
class and has no real zeros, 17 (b, Z) is of bounded type and of mean type
7{b) in the upper half-plane, if Reif'(b, 2)/E(b, z) is bounded in the upper
hal-plane, and if £ is a given number, 0 <2 4 < (), show that there exists
a space JC([(a)) contained sometrically In JC(E(8)) such that £(a, z) has
ne real zeros and such that the mean type +(a) of £i{a, z) in the upper half-
plane is eqgual to 4.

PROBLEM 296, Show that the function (ifz)Vf(-1/2) belongs to D,
whenever f(z} belongs to D, and that it always hag the same norm as f{z).
(Ff'» is not an integer, the root is defined so as to be continuous in the upper
half-plane and positive on the binaginary axis.) If f(z) belongs to 0,, show
thal

[D"“ |f i aede < oo,

FROBLEM 297. If f(z) belongs to D, v = 2 — 1, show that

exists in the metric of L3} —co, - e0) asa ™ O and b » o, If

f5) = |

where g{x} belongs to L2(0, o), show that

2 ey dy
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exists in the metric of LA, - o0) as e "y O and & » co, and that

for almost all real x. Show that
(o2 e | 1oyt
LN = [ latnyieas
=2 [ G0 e
— O W7 Rt
= O fﬂ |y Tk — ie) |2,

Show that a given function F(x) in L3(-- o, + o) corresponds in this way
to an element of {0 if the last integral converges.

PROBLEM 298, Ifsis an imaginary constant, let
(—iz)? == exp 5 log (—iz)]

where the logarithm is defined continuously in the upper half-plane so as

to be real on the imaginary axis, Show that the function is analytic and

bounded in the upper half-plane and that it has a continuous extension to the
closed hatf-plane except for a singularity at the origin, Show that

) ¥

Re (------‘22)& — J

Tl

v Ro {—it)%dt

—w (L - %)® b yP
for » == 0. Show that

— 1"\‘ ( —_ 2'2') L —_—

for ¥ = 0. Bhow that

l f‘.y_, gy xgime

— e wmn pE)
Doido ( — Dy)? e ——

for all real x when p = 0.

PROBLEM 299, If i{x) is a real valued funceion of real » such that

o B0
—o g

3

show that there exists a funclion f{z) analytic in the upper halfiplane such
that

P o Ryl
Ref(z) == f:,,c, =1
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for y = 0. Show that
e R(L)l
" bt
1)
Qe e (e 2)
for ¥ = 0 and that
J 7GR e o,
Show that
x(?hrp: lx{',..-.img

f(:ﬂf' (i6) 4l e P — f(m R(eyeie-tdy — e L,m h(— o)ty

— )] gﬂﬂ! - {?‘---"a,' .

for almost all real » where the Integrals are taken as mean square limits of

b, P
f' i the metric of LA oo, -+ 90) as @ ™ 0 and bt oo,
oib

65. EMISTENCE OF SUBSPACES WITH
GIVEN MEAN TYPE

A variant of the Beurling-Malliavin theorem is used in applications of
Hilbert spaces of entive functions.

THEOREM 65. Lot JC(77(4)) be a given space with phase function g(b, %)
such that @'(d, x) & bounded and such that

[5 0  @)=tip(, 6 — w(h)tidt < eo

for some number =(6) = 0. ¥ & i5 a given number, 0 = f == +(8), then
there cxists a space JC(F{a)} contained isometrically in JE(ED)) such that
Fifa, 2)[F(b, z) has no real zeros and such that the mcan type of fi(a, 2)/
(b, z} in the upper hall-planc is equal to kb — #(5).

The proof again depends on Lemma 12, A method of Beurling and
Malliavin is used to verify the hypotheses of the lomma from o knowledge
of boundary values on the real axis.

LEMMA 13, Let f{z} be a function analytic in the upper halfplane whose
real part has a boundary vatue function k(%) on the real axis such that

ST
and such that
o ¥ A{Dydl
Re /Ts we = =
YOl I o
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forp = 0, T

Yo o ) ES {lt ‘,.{_'{'f— =
JI J 3 M{”) ;L(!‘)l |£i \S'(].f..ig ‘\‘) 8 C:O,

then [7(2) belongs to 5,

LEMMA 14, Lot /{z) be a functlon analytic in the upper haté-plane whose
real part has a boundary value lunction A{x) on the real axis such that

[7 (01 ey sl < oo

e
aned such that

Re f

i y {- /E l)(l{[
fl:ﬁ

[ Xy _]:E

for y = 0, IFA(%) is differentiable and il the devivative of 2A{x) 1s bounded,
then f*{z) helongs to 4,

Proof of Leena 13, "LThe vesults of Problems 297 and 298 are used to prove
the fermma, Che integrals

Fo(xy = f ALyeetdt and (&) e jﬂ LT !

Lo e .
make sense as mean square bmits of f asa w Dand b o ocoo By Plancherel’s
W2

formula (with a change of variable)
o [ 1B (0]t — L Rt
and simitarly for (), Dut

’.om ()R M e s ()
and
2o [""’ o LB () ]“"" [A(st) - h{0)|2e et

v

when s 3 |, whoere

i

5=

w |57 — 1Ry N L w sInd (s}
l- |5 Hels _ J- E | s g ’- sin (‘\ }ds e ]
t s{logs)? o 0 i

by Plancherel’s formula sinoe

Tt follows that

2t [ 17 ) e = [ [ V) - OR s



Th 6O EXTTENCE OF SUSKPACES WITH GIVEN MBAN TYVDR 265
and in the same way

2n? J_“’| RO J ? J“ IRty = R |1t d.

o il
Fix) X VTR () e ()
A} o a 3
g L T PP
then
STk —wt nr et wdwe g ;
ooy B0 —= . e g &0 — e [’l(l) #
J " 2 [ — | et
et WUl el “&1,'#_[;‘ I
» f ¢ & e () p
[_,lh’- e T
- J'"“ﬂ LT 2[{ 9 f,.-,, Lomt P .
b i . I i I Al LD _- e ut; ( )I “
. fr i ol i
[T 2 G 1 1B
o b J‘"’"“" ()12 (2|2t - L f‘” J"""’ Vst — R(E)®% |0 Lelt ds
s ) i el A W (st} ()% | o)l ds,

Euler’s identity

can be verified rom the product representation of the gamma functlon,
Prollem 19, and the analogous infinite product for sin (w2}, (Compare with
Problem 18} T fotlows that

a—irk

| t"m b o|eesy
[ e [P 2 [ VRO~ i),

By Problem 297 there exists a function g{z) in Dy such that
l‘}‘ ....... o 10 TETAYLILS 1
() e lim [E ol
in the metric of £2(--co, |- co) s a0 and & # oo, and
()8 = 2m [ I~ iy

lh J"' O L flﬂ I-'; We(s) — R(Y)® |ti-Lddt ds.
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By Problem 298,

TR i LT

o X I, (X ¥t (x
[ gt = ) )
0 g g TE L

",--"II'JJ

w | ot 'timdz I l " Jingff
— U — - — '; o ,
n i .fo {t -~ ip)¥ h{p)dy fn Qi L (1 — z:y_):’- i J’)t’{y

s Im : J‘m ﬂ)@m Ly 4 Iw l J'"" M__y)ﬂ-’y ey
o {

4] ﬁ 1] (J) .._‘"2'5)2 ) % 0 (.J; |_LHE

o 1 A}l f;(ﬂ)(ﬂ "
me .L. Q-rrif ..... w (1 '_""";"J‘))jy oy

[0" Sy,

The change in the order of integration is justified by absolute convergence
if h(x) vanishes in a neighborhood of the origin and outside of some bounded
sat. In this case we can conclude that f(2) = g(z) belongs to ). The same
conclusion is true by continuity in the general case.

Proof of Lemma 14,  Consider first the special case in which 2(0) -~ 0. Since
B{0) exists, h(x)/x is bounded in a neighborhood of the origin, and the
hypotheses nply that

[ Wl = oo.
By hypothesis there exists a finite A = 0 such that

h(x) - ah ()] M

for all reat x. Since
(R3] | AR ()] = M 1A ]
and since A{0) = 0,
| B2t 4 SRR s M [T P(felar
when x = (b and
[ B -n e 4 () M [ ol
when x =2 0, Lt follows that
[ wye e = M [ b0yl
and that

h(x)® = QM f " () ilde
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for all real x, So
juk' (x)) o B

where
B Mo [2M J N h(ey fdn .
We verify the hypotheses of Lemma 13, 1F
m(x) b f‘ bl |H----1!ﬂ

then m(x) is a nondecreasing function of x = 0 such that

f._.l ) ACER (bt = [r a3dm(x)
ancl
J‘I: |Ae)[t|dt = [‘uw x dmix).

Tar any fixed s = 1, the integral

f i(st) — A(E)|2 o —dt

267

can be estimated by considering the set on which |2(8)] or |A(sf)] cxoeeds

log 5. The contributien te the integreal from this set is at most

—2(8 log $%mflog 5)
hecause

[A(sl) — MO = Blogs

for all nonzero ¢, The contribution to the integral from the complementary

s60 15 ab most

‘3 11 ey 4
. Jlln(nl lugq UL f xEdm(x),
It follows that

@ [ dt s
[T e - MO S tom e

w2 flw (B log si®m{log 5}

ey

s(log &)*

w flogg !JJ
. 4 Xem(x) ——
} fl. -J:] ¥idm(x) s(log 5)*

= —2h f: m{0)et | 4 J:ﬁ f‘: aefrn (a0 Lt

____ mm;wﬂ;mmmmm+mﬂﬁmmmg

By Lemma 13, Sz belongs to 4, if AO) = 0

o),
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The same conclusion can also be ohiained it £(0) 54 0. Tn this case
consider the [unction
Jylx) == h{xy o am b log |1 — xfw]
where w is a number in the lower halfplane chosen so that 4,0} = 0. Then
hzfr ]31( )(l'f
s (,; SR ey

[or 3 == O where

Fulz) s fl) -z log (I 2fw).

The provious argument will show that /1{z) belongs to ). Since

Si(a) — iz} e z(z I w) b . (L? )
belongs to i, f7(2) belongs to D),
Proof of Theorem 65, "Phe hypotheses imply that
litn g{h, ) fx — 7(H)

Jag] -r e

and that
J-.i.w (1 -4 2 ~dip(h, £) < w0

By Problem 64 we can write F(b, 2) == $(z) Fy{h, 2) where $(z) is an entire
function which is real lor real z and where F,(4, z) ks an entire function of
Polya class which has no real zeros and which has value 1 at the origin, Wi Lh
no loss of generality, we can assume that £2(b, 2) = £, (b, z), that @(b, 0) ~

and that

J J i~ clq:(b t)

&
e ] B
3y og |£(b, x -} D) = —uw (f ) _|_ ’,‘!

’ﬂ‘

for p = 0. Since

we have

d e ] v dp(hy £) — ()]
5 Uog 1By 5+ 3] — (bi] = = [ e T

for p = 0, By the proof of Theorem 5, the difference between

__" ] T (;I'J(!) ) — T(b)t

,;r . (!‘ ) 1‘:?2 !

for 3 = 0, is a constant. The constant is seen to be zero by comparing the

log 15(b, x - )1 - =(b)y and



T'h 65 EXIETENMOE OF SUBSFACES WITH (IVEN MEAN PYRE 260

limiting values when x s 0 and p ™ 0, Tflog £{b, 2) is defined continuously
in the closed half-plane so as to have value zero at the Origin,

log Zi(h, 2) -1 dr(b)z - log F(b, w) - (0w —
g TI- k3 -} (J : ":
) f_' ot = 70t

7 ~w (f— 2)(t — @) ‘

when z and @ are in the upper halltplane and

o Ji 1 ppm g -
1%ﬂ£2+hwwhd'wm”.mi@m
Z Ty —m b 7

for ¥ = 0. By Lemma 14,
d log B{h, )
belongs to 1,
By the Lebespue dominated convergence theorem,

log [ [: l . I oppm g !), Ot — (b
lirn ii’j—(ﬂ w7 (b)) b lim Re o [ ' q_()_r() i
Nt J —— ar o i L — iy

oL s by £) e (b
e ‘7"((‘)) ' ”llfii ; ,J....m T!jjz ....... — i

nr TU)),
On the other hand,

log | E(h, ¢
tim ROy g
AN J

By the proof of Theorem 64 thore exists a function W{z), analytic and
without zeros In the upper halfplane, and there exists a number » s
0, 1,2, -+ such that

Re iW'(2)[W(z) =0,

WL, D) =1 - iz

for v = 0 and such that

Firn ID—RIM@ wm f,
e F

Also by the proof of Theorein 64 there exists an entive function E(2) of
Pdlya class such that Re [#{z)/W(z)] =0 for » =0, The functions
{1 =iz} () [W(2) and (| - iz) " (2) [40(h, z) are bounded on overy
horizontat line in the upper hall-planc. 11 2,(z) has r - 3 zeros wy, o+ - -,
Wy, then

E(z) == G(2)(2 —w)) + (2 — 10,45)

where G(z) is an entire function of Pélya class such that (1 — i2)G(z2)/
£(b, z) is bounded on every horizontal line in the upper half-plance. Since
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we assume thal ¢ (b, x) i bounded, Re i8'(b, 2)/7(h, 2) is bownded above
in the upper halfiptanc. [t follows that #(h, z -+ 1)/E(b, z} is bounded in
the upper half-plane. 8o G(z 4 ) is an element of JC(E(Y)) such that

Lin sup 3 log |Gy -1 4| = A

ene]

Such a function G{z) exists also if £,(z) does not have » - 3 zeros, For then
Bi(z) = P(z) exp (vz - inz)

where £(z} is a polynomial of Polya class, # and v arc real nmumbers, and
and 0 =2 o = b In this case the desired function G(z) 15 obtained with

G{z) = sin (hz) exp (u2)[Q{z)
where @(z) is a polynomial of degree v 4 3 whose zeros are contained in the
zeros of sin (4z).
Lt Me{u) be the sct of all elements F(z) o JC(Z(8)) such that the mean
types of F(z)/E{b, z) and F*(2)/£{b, 2) in the upper hall-plane are at most
b — r(h). Since the incquality

|F(2)|* i \F[RK(b 2y 2} exp [2R]y] - 27(8) |21

holds for every clement of Wo{a), M(a) is a closed subspace of JE(L(E)). Tt is
clear that F*{z) belongs to A(e) whenever F(z) belongs to Ab(a). I F(z)
belongs to A6(a) and has a wero w, then F(z)/(z — w) belongs to MG{a). 5o
Mi{a) is a closed subspace of JE(E(6)) which satsfies the axioms (H1), (H2),
and (H3) in the meteic of JO(E(H)). We have seen that AM(e) contains a
nonzero clement. By Theorem 23, A6(a) s cqual to a space B(E(2)) in the
metric of JE(R{AY. Since F(z)/(z — w) boelongs to Mo(a) whenever J(z)
belongs to () and L(w) = 0, Fla, ) has no real zeros, By construction,
the maximum mean type of F(2)/F(b, 2) in the upper hall-plane is & — (6)
for elements F(z) of Mi(a). It follows that the mean type of E(a, 2)/E(h, 2)
is & - =(h) in the upper hali-plane.

PROBLEM 300, Let K(z) be an entire function which is of bounded type
and of zere mean type in the upper and lower halfoplancs, Let

Jla) m J*: e (1)

e an absotutely convergent Uourier transform which vanishes in a neighbor-
hood of the origin and which does not vanish identically, Show that &{z)
is w constant if K(x) remains bounded en the support of .

66, EXTREME POINTS OF A CONVEX SET

A problem of Fourier analysis is to determine what closed subsets of the
real line can support a measure whose Fourier transform vanishes in an
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interval and does not vanish identically. The problem reduces to one for
entire functions,

THEQREM 66, Leta = 0 be a given number and let X be a closed subset

of the real ling, A necessary and sufficient condition that there exist a

function ge(x) of real & which has finite doal variation, which Is constant in

cach interval contained in the complement of X and whose Fourier trans-
b . . . : v N

form J. ¢ty vanishes in the interval [—a, 4] without vanishing
1

identically, is that there exisl an entive function §(z), which is real for real z
and has only real simple zeros, all in &, such that ${z) is of hounded type
and of mean type @ in the upper half-plane, and such that
L.
— s
sito |5 (0)]

The proof depends on the Krein-Milman  convexity theorem and
Naimark's characterization of extreme points.

LEMMA 15, Let a == 0 be a given number and let X be a closed subser
of the real line. Let w(x) be a real valued funclion which remains constant
in every open interval contained in the complement of X, such that

A nccessary and sulficient condition that

f‘|-‘.r.» g'i“”'!d}-ﬂ(t) mm ()

=0

for g = % =7 ais that

j.|.¢u F(&)([#U) o

-

Mofa, X) be the convex set of measures corresponding Lo such functions, If
a fuinction w(x) determines a nonzero extreme point of M, then the closure
of the Paley-Wiener space has deficiency | in L),

Proof of Lemme 15, If F(z) belongs to the Paley-Wiener space, then it is of
bounded type in the upper and lower half-planes and

cxp (~-a |y ()
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is bounded, — o0 <2 ¥ = oo, because
sin (g2« aZ) pfow
Flz 27— JA
L

for all complex z by the proof of Theorem 16, By Theorem G1, F(H) is a
lacal operator on Yourier transforms, Since F{z) is bounded on the real axis,

P |t

el

t

VG 0

=

is in the domain of F(H). 1LF(x) vanishes for —a - x = a, then (R f () -
2{x), where
£(0) = " P@)dp(s) == 0.

If on the other hand
l'l TR d () =0

et
for every element of the Paley-Wiener space of type @, then
- gt giha

Jlr———dupy =0

ity F o

when —a = & 3% a. By the Lebesgue dominated convergence theorem,

otht
s i — wf ! ”ﬂ)

[15 o) - —

/R B

P [ R rm iﬁ(’) P
Wi R I ]

for O =2 & o= ac A similar linit process inthe lower hall-planc will show that
the integr Al v;mislu‘.s when -z =04 <0 00 The integral vanishes by continuity
when A = 0,

We show that the closure of the Paley-Wicner space of type o has defis
clency bin LX) if g s an exlreme point of A6, Let B(x) he a Borel measur-
able, real valued function of real #, having abselute value 1 cverywhere,
such that

(B o ) == J* B(tydw(t)

whenover g and & are points of continuity of »(x). Then

f""”“ F(OLB(1)dv(t) == [’: F{dp(t) =0

-
for every element F(z) of the Paley-Wiener space of type e We must show

that any bounded, Borel measurable function A{x) of real x such that

f:lm FOADdw(1) = 0

=ix
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for every clement F(z} of the Paley-Wiener space of WPe 4 is weequivalent 1o
a constant mulliple of B(x), Eouivalently, we must show that any bouneled
Borel measurable Runation A(x) of real ¥ such that ’

[ Bhe)du(t) = 0

for every clement F{z) of the Paley-Wicner space Is »-cquivalent 1o 4 CONStant,
Since 7*{z) helongs to the Paley-Wiener space whenever 7(z2) belongs 1o the
Paley-Wiener space, it is sufficient to obtain this conclusion when hx) is a
real valued function, Since we can add a constant to /z(x) without changing
these conditions, we can restrict ourselves to the case in which A(x) =0 for
all real x. By lmmuty, it Is sulficient to consider the case in which

[ eyt o [ ant).

If 43 a number, 0 =7 4 =2 1, such that AA(x) is cssentially bounded Ly L, let

wale) = ° h@ydu()

and let

Then

s f_lt': dv(t).

IL1(z} belongs to the Paley-Wiener space of type 4,

_f’: F)dp, (8) == _Jwr " F()A{L Ydu(ty = 0

and
7 rwau
R [y
= (U 2 [ Ry — (1 B T du( = 0.
80 g, (x) and . (x) determine elements of AG, Since

f{xy = Ay (0 R (F — e (2)
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and since we assume that x 15 not an exteeme point, u(x) and @, (x) deter-
mine the same measure, Tt follows that

J: r(Bduit) == f? anit)

|

everywhere with respect 1o »,

Proof of Theorern 66, For the sufficiency, let $(2) be given as in the statement
of the theorem and et g(x) be a step function whose points of increase are at
the zeros of ${z) and which has a jump of

at each zero £ By hypothesis,

s 1
i 3 b

L S ety IS’(I)'
By the proof of Theorem 26,
e S(8) — 8(z) . ()
I_, == f _— il oz b b e AP
(2 =] el A m%_"o ST =8

s an entice function which s real for real z and of bounded type in the
upper halbplane, Since the function is equal to 1 at the zeros of S{z),
[L{z) — §1/5(2) is an entire function which is real for real z and of bounded
type in the upper hall-plane, By Problem 34, §() 15 of Pdlya class, Since
S(z) has positive mean type in the upper half-plane, it is not a constant, By
Problem 39, §(z) i unbounded on the imaginary axis. Since pS()| =
|5 —i3Y] 1s a nondecreasing function of » = 0,

lin 1/S{y) == 0,

Y=r-bu

By the Lehbesgue dominated convergence theorem,

) L) — 1 . 1
lim —— =1 —_—— = 0
g S T 2 T om =)

By Problem 39, [L(z) -~ 1]/8(z) vanishes identically, This proves that
L(z) = | identically. We show that

j:'m eMdpu() — 0
for —a =

I A is held fixed, consider the function,

o E_.Hzt _ Em:

Gz) = | —— du(t).

- }— z

+
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By the prool of Theorem 26, G{2) 15 an entire function which is of bounded
type in the upper and lower hall-planes, Since

e S() — S(2)

e & win

due{l),
we have

S$(2)G(z) — ¢ =

e SEZYett — g
J oo S(2)e a0 dupil)

ety bz

for all complex z. By the Lebesgue dominated convergence theorem,

B

fheo ()
0 — lin J b —-(M .

poen i 0 e L ...... zly

¥

) o e 1 (1
= i J e f.mw_’u( )

I —a = b= a, then ™50 is bounded, - =l = oo, by the com-
putation of mean type, Theorem 10, Tn this case it {ollows that

lim G{ip) — Q.

Yorlam

A simtlar argument will show that

[T Y

By Problem 39, G{z) vanishes identically, By the proofl of Lemma 15, the
Fourier transform of the measure g vanishes in the open inlerval (—a, a),
and hence by continnity in the closed interval,

The proofl of necessity proceeds by an extreme point argument, The set
of all measures of total variation at most 1 is a compact Hausdorft space in
the weakest topology which makes J-W'-:‘_/‘(ﬂ)dﬂ.(ﬁ) depend continuously on u
for every continuous function f(x) of real ¥ having limit zero at inlinity. Let
AG be the convex sel of measures defined by Lemma 150 IF there exists a
function w(x) of finite total variation which is constant in each interval
contained in the complement of X, and whose Fourier transform vanishes
in the interval [--g, ¢} without vanishing identically, then M contains a
nonzere element. By Lemma 13, AG s o closed subspace of a compact
Hausdorft space and so is itself compact, By the Kreln-Milman convexity
theorem, M s the closed convex span of its extreme points. So il AL containg
a nonzero clement, it containg a nonzere cxtrome point, 'To prove the
necessity we need only show that every nonvero extreme point is obtained
{rom an entire function $(z) as in the proof of sufficiency,
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M(zY =osup [F#(2)]

where the supremum is taken over the elements of the Paley-Wicner space
of type a such that J"T"m |F(Odp(f)] = 1. Since [F(z) — Flw)}f{z — w)
belongs to the Paley-Wiener space whenever /{z) belongs to the Paley-
Wicner space,

o F() - {2

l“ L...(.) df«*"(t) == (),
When iz Is not real,

BNy

() J‘l: (4= 2)" M pe(t) ' [y fu LD d e (2],

By the arbitrariness of #(z),

M(z) A L

By the proof of Theorem 62, M(z) = 1 is finite and locatly bounded,

[1 (1t log M(9ds <2 oo,

—

and

et

Y opaw log M
log M(x 1+ ) == alpt 12 12 8
qr o (j,' -

when p 5% 00 'Phe majorant M{z) is used to construet a Banach space of
entire funclions,
We first show that an entive funciion G{z) vanishes Identically if

[: |G duit)| == 0

and if G{z)/M(2) is hounded in the complex plane, Say that G{z)/M(z) is
bounded by 1. rom the above estimate of log M(2) we see that G{z) is of
bounded type in the wpper and lower halbplanes. By the proof of Theorem
26,

[«.,.m Gy — =)

- irh l — =z

F(2) - du(t)
is an entire function which is of bounded type in the upper and lower hatk
planes, Since

Fizy o= ((z) J‘Iw M

L]
S g —
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we obtaln the estimate

- oot rm
iI }j -t T ——L

By Probtem 39, {2}, and hence G(z), vanishes identically.

Let 1 be the set of entive functions G(z2), G{2)/AL{%) bounded in the
comnplex plane, for which there exists a sequence (F,(2)) in the Paley-Wicner
space of type a such that

.

lim [ |G(t) - B ()] [dpa()] == O,
P
Since

IF2) = Fy=)| = M(z) [77 1P (1) ~ B0 ()]
[or all n and £, there exists an entire function I{z), such that
\F(z) = o)) = M2y [ 1R — P du()!

for every » and such that

livo [ (1) e P (2} == 0.

g ¥

Sinee [F{z) — G{£)}/M(z) is bounded in the complex plane and since

qu |F(8) — GO Jdp(t)] == 0,

Flz) — (1(z2) vanishes identically. Tt follows that the incguality

1G] 5 M) [ 16 du)

holds for every clement G(z) of B, Tt is easily verified that & is a Banach
space in the norm

I R [EOT O]}

We show that the space contains [G(2) — G{w)]/{z — w) for all complex w
I ((z) is any entire Muinetion such that

[ 160 du) = w0

and such that () [M(z) is bounded in the comples plane,
By the Hahn-Banach theorem it is sullicient to show that

22) = [ SO Y0 g

wotts !
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vanishes identically whenever A(x) is a Borel measurable lunction of real &,
which is bounded by I, such that

0 «= [ FRE )

-
for every clement F(z) of the Paley-Wisner space of type a. By the proof of
‘Theorem 26, L{z) is an entire function which is of bounded type in the upper
and lower hall-planes, Since

[ ()Gl — G()R()

ey l -z

F(I’.‘).{.(Z) bt

wg obtain the cstimate

h(tydpu(t),

[F{z)l{2)] =

—') LAGE I [ o

By the arbitrariness of F{z),

IC(Z)/M(Z)I
191 '

It follows that L(z) has limit zero at both ends of the imaginary axis. By
Problem 39, L{z) vanishes Identically,
Il @ determines an extreme point of M, then by Lemma 15 for every

“-.m(; LAt fl,u(t)
1w

Bm‘ol nwaqur‘abl(‘ function /( x‘) of real x such lhat J jf( )([M( Y| = oo and

J.I:a LA — PO [du(2)] = O

. Mo eens

Since J |dpit)] = 1 and J. dp(t) = 0, the measure associated with g
— —tid

ts supported at more than one point. 17 (a, by 15 any finite interval which

containg at least two points of support of the mea:'-'.‘l.u‘q.“1 thm‘c exists a function

JU) which vanishes outside of (a, ) such that [j(l)d,u.( W oes 1 oand

fj'r:j_f'(t)(ly(ﬁ) s O TEF(2) I8 the covvesponding c:!mm:nt of I, then
L_"’ ()] = 0

It follows that the discontinuitics of u{x) in the halkline (b, w0} arc contained
in the zeros of F{z). Since F(z) does not vanish identically, these discons
tinuities have no finite limit point. By the arbitrariness of b, u(x) is a step
function whose discontinuities have no finite limit poind,

¢ and ¢ are distinct points of discontinuity of u(x), consider the
function f(x) which vanishes cverywhere except these points and whose
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values at these points are given by

f(tn)‘-..“("'(r"|“') - !«\"(‘fn“' V= U — )y

S () )] = G — ).
Since f‘m F(0duty = 0, there exists an element F(z) of B such that L) ==
Jlta), F) == f(4}, and F(1) == 0 al all other discontinuitics of u(x), The
function Sz ) 2 (g = )z - () B entive and vanishes at the dise

continuities of u(x). By c:c.mslrur.:tic:m,

S U elh ) — pilto==)] = 1,
S/ [t} = =) ==
Let 4, be any other zero of 8(z). Since (2 — £}~z — 1)715(2) belongs to
& and since the space comtaing difference quoticnts,
(2 =tz — )7z — 4)78(2)
belongs to B, Sinee
(he = 1)z — 1)z~ )Mz — )83
(2= )7z 1) AS(E) o (2 — )M — 1)),
the funclion (2 — t)~ 1z - 4)-18(2) belongs 1o B, The function vanishes
at all discontinuities of w(x) except £y, and ¢, if £, Is a discontinuity of u{x).
Since the unction doos not vanish at ¢, and since it has mean zoro with
respect 1o 4(x), £, must be a discontinuity of g(x). ‘The identity

J‘.Im (¢ — )Mt — f) WS () dpe(ty = O

J=
implics that

”i'l S (e — t) M pe(let) — plte—)] =0
STl by — el —=)7] == L.

S0 the entire function

and that

oo ()

ERL T - g

has value 1 at the zeros of ${z). Since 5(z) is of bounded type in the upper
and lower halbplanes, P{z) s of hounded type in these halfplanes. If K
i a hound [ (z — )4z - 4)"18(2)/M (2}, then

Pz ~ ‘ 1o dpe(t)
_— - K /V[
f(*—to)(“-t)l f— =1

= Ky
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when z is not real, Tt follows from Problem %9 that 2{z) is a linear function.
Since L(z) has value 1 al ¢ and 4, it is identically 1.
From this we see that ${z) v real for real z. Since

e )2 e S () [ M 2)

iz bounded in the cmnplm plcuu‘ the starting cstimate of log M(z) will show
that the mean type of ${z) in the upper hall-planc Is at most a. Since

it i
e & &
J— wae
J_”_m o - pe(l) )
whon - =5 f o g, the funetion
{}tlua _ I.i*-’“ ("U”(J',Lt( )
5(z) N I

is of nonpositive mean type in the upper hatf-plane, Lt follows that the mean
type of ${2) in the upper halfiplane is equal to a

PROBLEM 301, Tet ((a,,6,)) be a sequence ¢ of disjoint intcrvals to the
right of x == | such that

2 “n'b n

- o,

Show that an absofutely convergent Fourier transform

Sy = [ eisdpge)

vanishes identically it it vanishes in an interval and il z{x) is constant in each
interval (a,, &},

67. ENTIRE FUNCTIONS WITH ZEROS
IN A SET

As an application of the extreme ])um( method, we construct nontrivial
entive functions which have seros inoa given set md whose reciprocals have
absolutely convergent partial fraction decompositions.

THEOREM 67, Lol ip(x) be a uniformly continuous, increasing [unction
of real & such that

’wm (1 By Lty — wtldt = o

o

for some number 7 o= 0 For any given number g, 0 =7 4 <7 7, there oxisla
an entive function §(2) which is real for real z and has only real simple zeros,
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all at poiats £ such that () == 0 modulo 7, such that §(z) is of bounded

type
and of mean type e in the upper hail-ptane, and such that ‘

z 1
— o,
—
s{00 [87(8)]
By the proof of Theorem 66, these conditions Imply that the partial
[raction decomposition

1 valid,

LEMMA 6. Tt p(s) be a uniformly continuous, increasing function of
real x such that w(s) »u 0 modole 7 for at least one value of », Then thore
exists a space JC(A) with phase funetion @(x) which has a bounded derivative
and which agrees with plx) whenever @) == 0 modulo 7 or w(x) o=
0 modulo .

Praof of Lemma 16, Since p{a} Is uniformly contimeous,

J‘ (1 e £3y-Lep(t) = co,

o]

IF {t,) s an eoumeration of e points ¢ such (hat W) 2 modulo 7, then

L - B e,
Let £(2) be an entive funetion of Pédya class, which is veal for real z, such that
il (z)

b

Bz

lovr p 2 00 Then d{z) . /() s an entive function which is real for real z
and Redd(2)[8(z) = 0 (or p o= 0. Ie follows that a space JC(F) exists,
£0(z) s A=) -~ iB{z), The phase function py) associaled with Flz) can
be chosen so that p{x) ~ w(x) whenever (%) == O module 7 or pl) ==
0 modulo v, We show that ¢'(x) is bounded. Sinee tan p(y) FHEIEIEIR
@' {x) == 1 whenever p(y) = 0 modulo 7, Since

B ) - A o)

2 e
the identity

i ! ( x) =

holds for all real x. Since we assume that p(x) is unilermly conlinuous, there
exists o nwmber § =0 such that |6, — 4] = 6 whenever By ol Kt 1w
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convenienl to choose & <2 e IF ¢ f¢ a real number such that gff) ==
O modulo 7 and if [x — 1] = 4, then

, ks sin® () i sin® g{a}
1t follows that
col gp{x) - (w8} cot [={x — )/d]

is & nondecreasing function of x in the interval (¢ — 8,1 -- §). Since the
funetion is continuous at ¥ == £ and vanishes there,
cot? p(x) o= (wfd) cot* [a{x — /4]
for |x ¢ = 8. 1t follows that
- . sin® [(x - $}/4)
sin® pla} = ——— 3 TE— ; .
sint [m(x — £)/8] + (7/9)? cos® |7{x — 1)/8]

and that
]

eost |m(x — /8] 4+ (Sfw)y2 sin® [mwl{x t)/c3| ’

o' (x) =

So @' (x) = (w/8)* for these values of x. I, on the other hand, » is & pumber
at distance 36 or more from the points ¢ such that @(i) wi 0 modulo =, then

s T ————— U e
s pernl] (QH, Es 1 )ﬁ(éﬁ)'ﬁ. KT

by Problem 18, 8o o'(x) = (7/8)? for all real &

Proof of Theorem 67, Since the hypotheses imply that p{x) is unbounded,
there exists a value of x such that o(z) = 0 modulo 7, Let JOUE) — JCLFE()
he a space corresponeing to w(x) as in Lemma 16, By Theorem 65 there
exists a space JO(L(6)) contained lsometrically in JC(J(c)) such that F(b, z)/
£(e, £) has no real vergs and such that the mean type of (e, £){#(b, 2) in the
upper haif-plane is greater than the given number ¢, Let F(z) be an element
of JC{E(MY) such that F{2)/F(c, z) has a nonzero value at every point x such

of the demain of multiplication by z in JE(L(0)). Since the closed span of
these functions does not Al the closure of the domain of multiplication by 2
in JC{F(5)), there exisis a nonzero clement G(z) of the closure of the domain
of muttplication by z in J{J(:)) which is orthogonal to o™z} ftor
—a = h o= a Let (¢,) be an enumeration of the real numabers ¢ such that
g{t) == O module 7. By Theorem 22,

. EXp (H"‘tn.} F(ﬁn)(;(iu) e RO NN
Ty R ¢, G =0
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The identity can be written

[‘-r-”- #M () e ()

where p(x) i a step function whose only discontinuitics are at points ¢, and
which has a jump of

#lly) — ,M(lfﬂ—) ==

for weg =o f v

m PG,
( u) '1"( 'Nl)l

at each such point, Fhe integral is alsolutely convergent since
| e . .
['7Vdptet =171 560
by the Schwarz incquality, Since
PR B KO }2
GEE == — i [ e
1N = 2 Sy | 2
there exists some n such that G{¢)/7(¢,) -~ 0. Since F(t,)[E(1,) %: 0 for

all w, pld, -1y = plt, ) 5= 0 for some n Tt Follows that f_lz e“hlu () does

not vanish for afl real x. The theorem now follows from Theorern 66.

¥

PROBLEM 302, Let K(x) = 1 be a continuous function of real x such that
log K (%} is uniformly continuous and

I 001 e tiog K(yd = oo,

iR}

Lot u{x) he a nondecreasing function of real x such that

( v KO du(t)

g
IFJE(R) is a given space contained isometrically in L3 ), 1f £(2) is of bounded
type in the upper half-plane, anc if £(z) has no real zeros, show that 7£(z)
has gero mean type in the half-plane,

PROBLEM 303. T K(x) is a function of real x with positive values such that
log K(x) is unilormly continuous, construct a differentiable function K| (x)
of real x, which ¥ equal to 1 In a neighbarhood of the origin, such that
KK (%), K (9)]K(%), and K{x) (K, (x} arc bounded funclions,

68. NORMS DETERMINED ON A
SEQUENCE OF POINTS

A fundamental problem is to determine the spaces JC(E) which are
contained isometrically in any given space L3 ). An existence theorem for
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such spaces can be given when a(x) 35 a step lunction whose discontinuities
are regularly distributee.

THEQREM 68. Lot w{x) be a uniformly continuous, Increasing [unction
of real v such that
"o
[17 0t () = s = o0
ihy
for some numbaer ¢ 2 00 Liet FY{x) be a function ol real x such that log | /(4]
15 wniformly continuous and

f.w.u:- (1 o By Wog | (O [dt =2 eo,

]

Fov any given nwmber &, U =2 @ =2 7, there exists a space JO(E) such that

o e o ]
[ irw s ea = Sre e

G -
for every £4z) in JE(I) where ¢, §s for every a the unique point such that
b, ) e on The space can be chosen so that f(z) has no real zeros, so
that £8{z) is of hounded type in the wpper half-ptane, and so that its mean
Lype 35 .

The proof recuires another variant of the Beurling-Malliavin theorerm,

LEMMA 17, Lot K{x) == 0 be a continuous function of real & such that
fog K{x) is uniformly continuous and

25 (0 eytog Kol =2 oo,

]

Let gp(a) be a uniformly continueus, increasing [unceion of real x such that

ey .
[ Q08 2ty — rilds =2 <o
Joon

for some munber = 2 0, For any given number g, 0 <7 a =7 7, there exisls
a nonzero enlire function F(z) of bounded type and of mean type at most a
in the upper and fower halbplanes such thae K remains bounded on
the set of points x such that p{x) = 0 modulo .

Praof of Lemma 17, By Problem 503 it is suflicient to prove the lemma in the
case that K(x) is a differentiable funetion which is equal to tin a nelghbor-
hood of the ortgin and K7 /K&) 1 bounded, I log K(%) s ~-xh(x), then
Alx) 15 a differentiable linction of x sueh that

Y eyt = w0

o=
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ancl such that the decivative of ¥h(x) i bownded. 1€ /(2) s 2 fanction analytic
in the upper hatf-plane such that
. f.;.w h{tydt

v (1 - w)R e g

for p = 0, then f7(z2) Delongs to 0, by Lemma (4, Dy (the proof of Theorem
"G4 leo exists  [unction M) .mdlym and withoul zeres in the upper hall-
plane such that Re iW7(2)/ 1 (z) =0, such that M7z 2} s of houndee type
and of mean type at most g o Llu lmlf planc, and such that

KW 1L - dx)?
tor all real &, where 7 Is o nonnegalive integor and
Im’r(l’)! =m 110 ”«1/’(;‘- “p {'};)l‘
w0
By the proof of Theorem 15 there exists an entire function #(z) of Pélya

class such that

Re [F(2)/W(2)] 20

for p = 0. 'The lnction is of bouncled Lype and of mean Lype at most 2 in

the upper half-plane, IF \/! jW( ) is defined continuously so that its
real parl is nonnegative in L}u hd.“. «plane, then the real parts of

exXp (,Lm)\/l (z)/”f’(z)
and

exp (— bim) \/l' /Il

are nonnegative in the half-planc. By the Poisson representation,

Pmquwﬁmmwwmmh:m

=}

It follows that

2200 e igr-sme gy = oo

—

For every integer », let £, be the unique veal number such that g{d,) == .
‘-:mu, y)( ) is umfnunly cc‘ml,muum, there exists 4 number & = 0 such that
Lt = 24 whonever n oo k. Since

5 o ,
J;kuhwg—m+%m—ummwmw

RS

s Y f i L — i) 8K (L, = DLy (L, — 1M = o0

there exists at loast one number & & o= 8, such that the function

(U= ix o ity ™K (s — (e o 1)
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remaing bounded on the set {£,). Since log K(x) is uniformly continuous,
the function
(1 — ix - i) K () £ {x — &)

remaing bounded on the set, T0 R (2 - £) has r - 4 seros 105, - -+, 1,4, the
desired function f{z) is given by

By o b) s F{2Y (2w wwy) v v e (2000 ).
If 2,(z — {) has fewer than r -- 4 zeros, then
‘E'L(z """ . t) B _)TJ(;:—_)CF,@M

where P(z2) is a polynomial of Pélys class and 0 =0 A =D a. In this case F{z)
is piven by

B(z) = sin (2)[Q(2)

where Q(z) is a polynomial whose zeros are contalned in the zeros of sin {(a2)
and whose degree Is r -+ 4 minus the degree of £(z2).

Progf of Theorem 68, Tet b be a number, a =2 b =2 7. By Theorem 67, there
exists an entire function $(z) which is real for real z and has onty real sirple
zeros, all at points £such that {t) = 0 modulo o, such that ${z) is of bounded
type and of mean type & in the upper half-plane, such that

1

[ |

amz oS8T

By Lemma 17 there exisls a nonzero entive function L(z) of bounded type
anct of mean type less than b - ¢ in the upper and Jower hall-planes, such
that L{x)W{x) is bounded by | on the set of points x such that p(x) ==
 modulo #,

Let 3¢ be the set of abl entire functions F(2) of hounded type and of mean
type at most ¢ in the upper and lower hali-planes such that

]

We show that J€ containg o nonsern element, By Lemma 17 there exists a
nonzero entire function (2} of bounded type and of mean Lype at most ¢ in
the upper and lower hall-plancs, such that Gle) /W (x) remains bounded on
the set of polnts x such that w(x) == O modulo = [ G(z) has a wero w, then
G(z) = {z — w)F(z) where F{z) is in A€, If {2) has no zeros, then G{z) ==

bounded on the set of points & such that p(x) == 0 modulo . In this case
sin {a2) «= z8(z) where F{2) is in J&. We show that K is a Hilbert space.
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By the proofl of Theorem 66,

arnyl

Ly pdlbn

1 S

-‘-ml! S (L)

bounded type and of mean type less thao & in the upper and lower halfs
planes. 1t follows that
exp || off F(p) 1.(ip)

remaing bounded, — oo =y = oo, Bince F{x)L{x) remains bounded on the

0= 3 H L) — PR LE

e by v 2 S'(tu)

holes for all complex £ by the proof of Theorem 61, By the partial fraction
decomposition of 1/8(z), the identity becomes an interpolation formula

te Pl Sz
rrgn - 5 T SC)

=t lg’u") zZ — tﬂ ’

By the Schwars inequality,

o | S(z) P S(2)8(2) — $1(2)5
|F{z) L{=)|* =) 2, (_?)6 = |72 © (2) Z D)

for all complex =z, IF (&, (2)) s a Gauchy sequence in JE, Hm ,(z) == (=)
exists uniformly on bounded sets, The limit is an entire function such that

.|. o

z ”P(ln)/PV“n)iH =L a0

and such that the same interpolation Jormula holds. By Problem 65,
F{z)L{2)}/5(2) is of bouned type and of nonpositive mean type in the upper
halfplane, Tu follows that I(z) i of bhounded type in the upper hallplane
and that its mean type does not exceed the difference between 7 and the
mean type of L{z). Since L(z) can be chosen with any mean type less than
b - g, the mean type of F{z) 18 at most 2. A similar argument will show that
F(z) is of bounded type and of mean type at most ¢ in the lower hall-plane,
S0 Flz) belongs to J6. Since

4B e Bl 2 tim || By oo T, )

Je—t oy
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and since the sequence (7, (2)) Is Cauchy, Iz} = lim #, {2} in the metric
of 46, Phis compleles the proof that JG is & THlbert space.

The axioms (1), (112), and (F3) are casily verified, Since J¢ contains
a nonzero clement, il s equal sometrically o a space J{L) by Theorem 23.
Since 2z — ) belongs o J(F) whenever 2(z) belongs to JC(£) and
has a wero w, £{2) has no real seros. 1t s clear from the definition of JC that
#(z) 15 of bounded type and of mean type 2 in the upper halt-plane.

PROBLEM 304, Lot W{x) = 1 be a continnous function of veal x such that
fog W{x) is unitormly continuous and such that

- i
] P 8 log WD =
i
Show that theve exists a nonconstant entive function (z) of bounded type
anel of xero mean type in the upper and lower hall-planes such that F(x)/
W/ (x) 1s bounded on the real axis,

LAGLIERRE CLASSES

A gencralization of the Pdlya class theory is given by the Laguerre
chasses ol entire lunetions,

FROBLEM 305. Lct p be a nonnegative integer. An entire function 4{z)
is said to belong to the pth Laguerre class Ui is real for real 2, has only real
zeros, and has vahue one at the origin, and il

Re iz (zy|F(z) &0

[ov 3 = . Show ihal the function

|
{1 — hz) exp (f'r.z. b AR e e e ML ""H)
Jp |1

belongs to the pth Laguerre class i 4 is real. Show that a finite product of
functions which belong to the pth Laguerre elass is a function which belongs
to the pth Laguerre class. Show thatl a limit of functions which belong to the
pth Laguerre class is a function which belongs to the pth Laguerre class if
convergence is uniform on bounded sets. T0(4,) is a sequence of real nunbers
such thal

<)

3 A e,

qe-]
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show that the product

P(z) = 11 (b — A,z) exp (fe -l SR F...__l.,__ KL 3L
n-l Ap ]

converges uniformly on bounded sets and represents an eative funetion
which belongs to the pth Laguerre class, Show thal it satishes the eshimate

log (1 4 |P{z) — 1) Z FEp 12 |zt

for all complex 2. Show that the lunction exp (—az*"¥) belongs to the pth
Laguerre class if @ 5 O,

PROBLEM 306, If an cntire function #(z) belongs to the pth Laguerre
class and has a 2cro w, show that

F(z) wm G2 he) oxp (/tz whe BREZE che e e ,’1'4!"|-1;_-_2.”-|-1)

2p |- 1

where ((2) is an entire [unction which belengs to the pth Laguerre class
anc A == 1w,

PROBLEM 307, I[ an entire [unction Iz} belongs to the pth Laguerre
class aned has no zeros, show that

F(z) s exp (—azi )

where a = (),

PROBLEM 308. If an entire function f{z) belongs to the pth Laguerre
class, show that F(z) is cqual to

|
exp (—az#1%) TT (1 = h,2) exp ( 2R CE e )

where a O and (h) &5 2 sequence ol real numbers such that 3 3048 o oo,
PROBLEM 309, If an cnlire function /7(z} belongs to the pth Lagucrre
class, show that

L By 2200 e e (B0 -1 )0
)
where § 2 0 and

log (L -1 [#7z) - 1) = d|zf*

[or all complex z.
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PROBLEM 310, Let #(z) be a function which is real for real z, has only
real zeros, and has value ouc at the origin, Define log F(z) continuously in
the upper half-plane so as to have limit zero at the ovigin, Show that F(z)
belongs to the pth Lagueree class i, and only if,

Rei[log F(2)] /22t 5 O
for ¥ = 0.

PROBLEM 311, TLet F(z) and G(z) be entire functions which are real for
real 2, have only real zeros, and have value one at the origin, Assume that
G(2)/I{z) s of bounded type in the upper halftplane, Let P(z) and §(z2)
be the unique polynemials of degree at most 2p -+ |, which ace veal fov veal 2
and have value xero at the origin, such that the derivatives of F(z) cxp £(x)
and (7(z) exp Q(z} have zeros of order at least 2p - 1 at the ovigin, Show
that G(z) exp @(z) belongs to the pth Laguerre class if F{z) exp P(2) belongs
ter the pth Laguerre class,

PROBLEM 312, Let F(z) be an entire function of Polya class which s real
for real z, has only real zevos, and has value one at the origin. Let P{z) be
the unique polynomial of degree at most 2p |- 1, which s real for real 2
and has value zero at the origin, such that the duwa.l.wﬂ' af iz} exp P(2)
has a zere of order at least 2p - 1 at the origin, Show that F(z) exp P(z)
belongs to the pth Laguerre class,

FROBLEM 313, Tet JC(F) be a given space such that F(z) has no real
weros and  A(0) = 1, Show that the transformation F{z) - [F(2) —
A F(0Y]/z is sell-adjoint in the space. Show that the space admits an
ovthogonal basis consisting of cigenfunctions of the transformation, Show
that the nonzere cigenvalues of the transformation are the numbers {1/1,)
where (¢,) are the werns o 4{z),

PROBLEM 314, A bounded transformation T of a Hilbere space into itself
is said to he of Schmidt class if

o( Ty = 3 0% =

for some orthonormal basis (/) of the space, Show that the sum does not
depend on the choice of orthonormal basis,

PROBLEM 315. Lot J0(£) be a given space such that E(z) has no real
zevos and A(0) = L. Let T be the translormation

F(z) -+ [#(z) — A{2)I7(0) ]{z
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in the space. Show that T4 is of Schmidt class it 4(z) belongs to the pily
Lagucrre class, Show that o T')2 = § where ) '

(B b 2)F ms Hm A (2) ] 22040,

FE il

Show that equality holds if

lim M ez (),

portea YT

PROBLEM 316, Let JO(L) be a given space such that £(2) has no real
weros and A(0) w== 1. Let T be the ransformation

(2 = [1(z) —~ A(2)F(O0)1fz

in the space, [E 747 iy of Schinidt class, show that E(z) = §(2)E,(z) where

S(z) Is an entive function which is real for real z and has no zeros and L)

is a space such that 4,(z) belongs to the pth Lagucrre class, Show that Ayl2)

can be chosen so that

log IAU({'p)J
PEaE

litm

r——

PROBLEM 317, Lot {(JE(FUN} be a Lamily of spaces, ¢ = 0, associated wiih
a nondecreasing, matrix valued funciion

a(ty D)
mit) e ( )oF )
Bl vt

so that £(¢, z) is a continuous function of ¢ for each fixed z and
(Alb, 23, B(b, 2)) — (A(a, 2), Bla, 2))] = 2 f: (A, z), B(t, 2)ydm(t)

when O <2 a < & < o0, Assume that 25(g, z) has no real zeros and has value
one at the orvigin for every Index 2 and that

lim K{a, z, z) == 0

Q)
for all complex = If for some index o there exists a polynomial P(a, z) of
degree at most 2p - 1, which is real for real z and has value zero at the
origin, such that A{e, z) exp Pla, z) belongs to the pth Laguerre class, show
that such a pelynomial exists for every index . If

lim M = )

ITaE
U o N
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for some index o, show that the same is true for every index g, TF

—{(2p - Dd{a) == lim

£evd

T [A{a, 2) exp Pa, 2)],
show that &{f) & a conlinuous, nondecrcasing function of ¢ such that
limy §{8) == O ag i ™ 0. Show thay

V-f- | A{ay &) exp Pla, 2) — | = cxp [${a)]zf21¥]
[or all complex z.

PROBLEM 318, T.ct ¢ be a point which is regular with respect to m{l) in
Problem 317, IE( £,(8), g,(8)) Lelongs to L2{m) and vanishes In (¢, 20), show
that there exists an clement (Fi(4), 2((8) of L¥m), which vanishes in {s, o),
such that

ey = [* LAty + g,(0dB()],
Sila) = [T LA - g,0ar()]

whenever O < a <2 e, I0F(2) and Fy(z) wre the clements of J8{£(5) such
that
w) = [ A0, )t} (AC, @), B, 9))

for all complex w, show that

Fila) o [Folz) — A(2)F5(0)]/ 2.

LAGUERRE SPACES

Some interesting examples of Hilbert spaces of entire functions appear
in the theory of Lagueree polynomials, Lhe spaces satisfy an axiom which
depends on the choice of a real Index ». The axiom is equivalent to a
recurrence refation (ov the defining functions 4(z) and £(z) of the space.

PROBLEM 319. Lt JC{/) be a given space such that 2(z) has a nonvero
vatue at the origin, and tet » be a given real vumber, Assume that z#{z + 1)
belengs (o the space whenover F{z) belongs to the space, that Gz — 1)/
(z — 1} belongs to the space whenever G(z) belongs 1o the space and
vanishes at the origin, and that the identity

(€ = W 1), GOy = (), Gl Dl — 1))
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holds [or all such elements 7(z) and G(z). Show that K(0, z)/ ()

hug A
nonzero value ab v, and that there exisly o matrix

having real entries and determinant one such that
(z — w3(z -1 1}, Bz 4 1P
== (A(2), B(2)) — (AG), BOU)K(Q, 2100, ).

PROBLEM 320, IFJC(F) Is a piven space which satislies the hypotheses af
Problem 319 for some index », show that there oxists a space W) which
satislies the bypotheses ol the problem for the same index v and that there
exists an entire funclion ${z), which is real for real’ z, such that

B(z) = S(2)Ey{2),

£84(2) s of Pdlya class and has no real zeros, and Sz o Ly o 82,

PROBLEM 321. Let () be a space which satisfics the hypotheses of
Problem 319 such thar Ey(2) has value one at the origin. II multiplication
by 2 38 not densely defined in JE(2,), show that the closure of the domain of
multiplication by z in JE(Z) is a space JC(H)) which satishes the hypotheses
ol Problem 319 in the metrie of J6(4,). Show that £ (2) can be chosen so
that the identity

. P -,z u;‘iz
(A (zh By(z}) — (Apaz)y By (2) "
T I+ o,z

helds with 7 — @ for some real numbers #, and »,. Assume that multiplica-
tion by z is not densely defined in JO(£). Show that there exist spaces
SOy m == 12,8, - - - with these propertios: Multiplication by 2 18 not
densely defined in JC(FE), 'The space JE(H ) 15 contained isometrically in
JCLE)Y and colneides with the closure of the domain of multiplication by z
in JE(L), There exist real numbers #, and », such that the provious
identity holds for cvery » Show that JG(/,) satisfies the hypotheses of
Problem 319, If P, is defined for B, (z) as in Problem 319, show that there
exists a nonzero number A, -1 =7 4 <2 1, such that

", i, 0, 4,
£, ( = A and £, v Q1
Uy Uy Uy 2,
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for every ni. Show that there exists a real number «, not a negative inleger,
sch thae

(Uit == A2 4 v+ 1 -l DYf{e 2o oo 1)
and

s it = Dugalig) = (1= (s b 1)

(D"(Z) e a'"l..A "(Z) - B"(Z)ﬂ"/?iﬂ.l
salisly the identities

(1 - AN (2)
wr A )B4 (2) — [l b m) 1 A% v omp L3R (2)
4 Al v Ao DP,(2)
for n = 0 and

3 (2) 55 (2 ) Dyulz 1) ok v o DIAD(R) = B2z

for n 7 0. Show that the intersection of the spaces JC{E) contains no
nonxero element, Show that 4 is positive iF £,(z2) has no real zeros,

Examples of Laguerre spaces can be constructed from the space ol square
surnmable power sevies and its generalizations, A Hilbert space Cla, & ) 2)
is associated with the hypergeomelric series

ab ala -+ VYb{b |- 13}

Fla, by z) = 1 b — z - PLIS

e 2ele - 1)

if the parameters are such that all cocfficients of the serics are positive. The
space is the set of power serics f(z) = 2 a,2” wilth complex cocllicients
such that

lte 2efe -+ 1)

IF(EDNE = el + — fay|® 4+ ———eers [atg]¥ | = = - I o,

ab ala -t 1ye(b 4 1)
The series which belong to CG(a, #; ¢; z) converge and represent analytic
functions in the unit disk. “U'he series Fla, &; ¢; @02) belongs to the space when
[w} = t, and the tdentity

S @) = (f(2), Fay b 65 82))

holds for cvery element f(z) of the space. When g se b s g oo
reduces to the usual space of square summable power series,

1, the space

PROBLEM 322. Let « and » be real numbers such that the cocthcients of
Fle 4 v - 1, Liae -} 13 2) are all positive, and let A be a given number,



Gh 3 LAGUERRE $BAGKS 205

0= A =1 Define

N +n4 1
1)) o A e b b s o e b B oo g e ]
D, () = A VPR ——y Flekvebn-blizined 24041 A%)

for every n = 0, 1,2, - -+ Show that B, (z) is an cntive function which s
veab for real z Show that there exist spaces JC{lL), n== 0, 0,2 ..
satisfying the hypotheses of Problem 319, such that Je(K 1) i3 contained
wometrically in JC(Z,) and such that @ _(z) spans the orthogonal complemeny
of JE(L,, ) in J6(Z ). Show that the function £3(2) can be chosen so that

al{x 4 e |- 2) -~ - {& --fu'n)
----- (e -low -+ Dby R 2) e e kv - m) "

PROBLEM 323, Let JC(F) be a given space which satisfies the hypotheses
of Problem 321 for some index ». Show that there exist real numbers e and 2
as in Problem 322 and that there exists an entive function §{z) which is real
for veal z such that $(z - 1) = A-8(2) and such that the translormation
F(z) = $(2)F(z} is an sometry of the space JC(#y) of Prablem 322 onto the
given space JO(£),

PROBLEM 324. Let [, (z) and B (z) be defined as in Problem 3922 for
some real numbers «, ¥, and 4. Show that

4

Dlw, 2} = F &, (@) 2"

ey
belongs to Cle 4 v |- 1, 1 i - 1; z) for every complex number w, If £(2)
belongs to G - v -+ 1, 1; % 4 L5 2) show that its cigeniransform F(z),
definee by

Show that every element of J(Z,) is of this form. Show that a necessary and
sutficient condition that F(z) belong to JCCE,) is that the coeflicient of 27 in
J(2) be zevo for all ndices r = n. 18 the coeflicient of 27 in S(z) is zero for all
indices 7 =7 -« k, show that the {ormula

i) : Bl
Flw) = AR(L e ARV () .l.u (l — .ﬂ.t)"""“"tf(t)dlf

is valid for Re w = 0,
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PROBLEM 325. In Problem 324 let f(z) and g(z) be cloments of
Cle |- v -k 1, Ly e 4+ 15 2) and et F(2) and G(z) be their cigentransforms,
Show that G{z) = zF(z) is a necessary and sufficient condition that f{0) == 0
and that
(1= g2} == (A — (L~ A2z = AL+ D (= A2

ol d e (1 — Az) (D)2
PROBLEM 326. In Problem 324 let /(2) and g{z) he elements of
Gl - - L, 15 e 4= |} 2) and let F(z) and G(z) be their cigentransforms,
Show that G{z) = zF(z -~ 1) 15 a necessary and sufficient condition that

#(2) == f(2) (A - 2){(1 — Az).

MEIXNER AND POLLACZEK SPACES

Some finite dimensional examples of Hilbert spaces of entive fanctions
are associated with Pollaczek’s orthogonal polynomials, The spaces are
characterized by an axiom which involves two paramecters, & and w, The
axiom implies a recurrence relation for the defining functions A{z) and B(z),
PFROBLEM 327. Lot JC(Z) be a given space, and let & and o be numbers,
b 0, w5 &, and fw| = 1. Assume that the functions

{h —iz)[F{z -+ 4) — F(z)} and (k- i2)[F(z - i) - F(z)]
helong Lo the space whenever F(z) belongs to the space and that the identity
(lh — (- 0, GO - (k- iOF), Gt - 1)) == 0
holds for every element ((2) of the space when I/(z) belongs to the domain of

multiplication by z In the space. Show that there cxist real numbers u, w,,
u_, v_ such that the functions

§.(2) = A(2)u, + B(2yp, and  S(2) = A(2)u. -+ B{z)e_
are ]ine,at‘]y independent and satisfy the recurrence relations
@lh — 12)8,(z 4 1) - i{w - ©)z28,.(2) — wlk -+ i2)8,(z - i)
Al — w)S,.(2),
@k — i2}8 (2 4 4) - i 4 @)25_(2) — w(h - iz)5.(z — i)
e A_(@ - w}S_(2),
@k - 12}S (2 1) b 2428_(2) - wilh | i2)S_{z —{)
s (A b B (B — w)8(2),
fh - i2)85 (= - ) 4 2828, (2) — (b +i2)8 (2 — i)
= (A — (@D — @)5.-(2)
b A

for some real numbers A and A such that Ay 1
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PROBLEM 328. If JC(£) satistics the hypotheses of Problem 327 for o,
indices 4 and w and il £(z) = $(z)Ey(2) as in Problem 221, show that
JC(£sy) satisfies these bypotheses for the same 4 and . 1.8(2) is not Periodie
of period 4, show that the numbers 4, and 4. which appear in the recurrene
relations for Au{z) and £,(z) are the negatives of the torresponding
numbers in the recurrence relations for A(z) and 2(z). )

PROBLEM 329. Show that a space fC{f) which satisties the hypotheses of
Problem 327 is finile dirmenstonal. If A is positive, show that 8. (2) belongs
to the space and that 4, = 7 - & where 7 15 the dimension of the space,

PROBLEM 330, Lct b and o be given numbers, 4 = 0, o o @, and
leo] == 1, Show that the polynomials (2} defined by

B (2} = " —nm kb iz; 20 1 o F)
are real for real z and satisfy the identities

@ — i), (z - 4} 4w 4 @) 2P, (2) — wlh -} iz)® (2 )
== (A -+ n) (@ — w)h,(2),
iz(w — w)d, ()
== e (2) b (b ) (e A @YD () — (2h 4 n)yD L (2),

(h = iz)D (2 b i) |- 2P, (2) — (b 22D (2 i) =on(B — w3, (2),

Wik — iz} (z 4 0} b 202 (2) o ¥} D) D (2 - )
we (Rh A my (@ ) (R).

show that there exist spaces J0(8,), » — 1, 2, 3, - - | satislying the hypoth-
eses of Problem 327, such that JG{R,) s contained mometrically in JG(F, )
for every n, such thal W,(z) spans J8(£)), and such that ® (2} spans the
orthogonal complement of JC(F ) in (X .,) when 7 = 0. Show that the
spaces can be chosen so that

B, = T(L 1 0 T(2)/1(2h -1 n)

for every .

PROBLEM 331, 1f JE(L£) is a given spece which salislies the hypotheses of
Problem 327, show that there exists an index 7 in Problem 330 and an catire
funetion $(z) which is real for real z and pertodic of period 27 such thal the
transtormation F{z) — ${2)1'(z) rakes K(F,) sometrically onto JE(4).
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belongs to JE(I) and that
P o e )
JLm e = A1

where the norm of £{z) is taken in G(24, 1; 1; z). Show that every clement
of J&(£) is of this form. Show that the identity
Tk —d2)T (k- 42)F(2)

== QB (04) | ’1 (1 — EFHEA] o ==L (e o D o Bleo - §E)dl
holds for & <y < A Let f{z) and g(2) be polynomials and let F{z) and
€(z) be their cigentransforms, Show that

(@ — @) (Hz) = @k — i) (z 4 ) b il b B) 2 {z) — wlh - i2)F(z — 1)
is a necessacy and suflicient condition that

a{z) == hf(2) v zf(2).

Show that

(6 — a)G{z) = @b — i)F{z | &) + 2zF(z) — ek - {2)F(z - i)

Show that
(@~ )O(2) ws (b — L0F (2 - 4) 3 zf(2) — (h -+ 2}z — i)

is a necessary and suflicient condition that
o) = f(2).
Show that G{z) =—¢(e@ -+ @)zF{z) is a nccessary and sufficient condition that
() v A2z @ @Yf(2) A (22— wz — @z 4 1)f(2).

Similar finite dimensional spaces arc associated with Meixner's poly-
nomials,

PROBLEM 333, Let JE(E) be u given space, and lot & and @ be positive
numbers, @ 5% ol Assume that F(z} has nonzero values at & and —A
Assurme that the functions (b - 2) [z -+ 1) — F{z)] and (b - 2)[F{z — 1) —
F{z)] belong to the space whenever F(z) belongs to the space and that the
identity

{2k — DF( — 13, GU)Y - (oo -} OF(), Gt -+ 1)y =0
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holds for every element G(z2) of the space when F{z) belongs 1o the domain
of multiplication by z in the space, Show that there exist peg] numbers
Hyy Uy, oy o such that the functions

8.(2) = Al2)u, + B(z)v, and §.(2) = A(D)u_ - B(z)..
are linearly independent and satisfy the recurrence relations

ol + 28z 0 1) — (o} Y28, {z) — o b 25, (5 -
A,
all - 208 (2 1 1)~ {e -} awWzs (2) - w1 A - 28 (7 - 1)

o (h ot 2)8_(z - 1) — 228 (2) o Wk - 28 {z — 1)

i (AL | B (e - w0, (2,
(b 2)8 0z 1) — 228,{2) — (b 2)5.(z — 1)

s (A e = Wy, (2)

{or some real nurabers 4, and A such that 2, = | 4 2_. Show that such a
space is finite dimensional and that either $, (z) or S_(z) belongs o the space,

PROBLEM 334, Let & and o be given pasitive numberes, o o4 ol Show
that the polynomials (2} defined by

P, (2) = =" —n, it - z; 2h; 1 — wh)
arve real for real z ane satisty the identities

wlh - 2y ®{z b 1) — (e -+ w Dz, (2) — @ Hh - 2D (2 — 1)
= (b -} n} (e o VYD (2),
z{m — b, (2)
el 1(2) = {heb o) (e 4+ @)D, (2) A (20 -4 n) D, (2),

(h o )@ (2 1) — 22, (2) — @k — 20 (z — 1)
v (20 b ) (o - DD, (2D,

Show that there exist spaces JC(/), n = 1,92, 5, +- -, satisfying the hy-
potheses of Problem 333, such that JE(E)) is contalned isometrically in
JC(H ) for every n, such that By(z) spans JE(L)), and such that § (z)
spans the orthogonal complement of JC(F)) in J(E,,,) when a2 = 0. Show
that the spaces can be chosen so that

for overy o,
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PROBLEM 335, I[ J0{£) is a given space which satisfics the hypotheses of
Problem 333, show that there exdsts an index r in Problem 334 and an
entire funclion S{z) which is ccal [or real 2 and periodic of period 2 such that
the transformation 17(z) -+ §{2)(z) takes JE(L,) isometrically onto JC(&}.

PROBLEM 336. In Problemn 334 0F f{z) = X a,z" is u polynomial of degree
at most 7, show that its efgentransfem F{2), delined by Fz) oo Ba, D (2),
belongs to JE(4,) and that

[ g = Lo

where the norn of f(2) 1s taken in CR24 1; 1 2). Show that every element
of J0(#,) is of this form. Show that the identity

Pk e 2k 4 2)F(2)

s QL BRL(2) [11 (1 W10 )21 (R e B o oo b Moy L))

holds tor & <2 a < b Let f(2) and g(z) be polynomials and let #(z) and
C/(z) he their cigentransforms, Show that

(i — wHGE{2)
wx (b ol 2) (2 b 1Y oo (b Y ef(2) — w™ Wb — 2}z — 1)

s a necessary and sufficient condition that

§(7) = If(2) + 3/Gz).

bhow that
(o wNH(2) = w(h 4 )F(x b 1) - 22F(2) - w*{k — 2z — 1)
is a necessary and sulficient condition thal

4l2) = 2hzf(2) -+ 2 t2).

Show that

(0 — @ GLZ) = (b b DF(z b 1) o 22F(2) o (R o 2)F{z = 1)



Ch 3 SONINE SPACER 301

SONINE SPACES

some other Hilbert spaces of entire functions which are of known structnre
occur in the theory of selbreciprocal funadons for the Hanket transforma tion.
In 1880 N. Sonine constructed a nonirivial example of a function which
belongs to LA, o), which vanishes in an inteeval (9, @), and whoge LEanket
transtorm ol order ¥ vanishes in the samoe interval, A fundamental problem
s to determine all such functions.

PROBLEM 337. lct v = 0, and let 4 and o be numbers such. that 4 g
o> —4and Ao e — 1L Define

J(x) s (4""‘(.r2 - (43)‘1""3}'3((4'\/:{2 (zé)x‘-‘ .

2(x) = a(x% — oV (o e

for x = a, and et f{x) and g(x) vanish for 0 < x =7 4, Show that f(x) and
(%) belong to L0, ) and are Fankel (ransforms of order »,

By

PROBLEM 338, Lot f{x) and g(x) be functions which belong to 230, o),
which are Hankel transforme of arder », and which vanish in an interval
{0, ), Lot w o= 2k — | where £ 2 0 and let

-3

F(z) wm 208 (R o ) I Sty

for y = 0. Show that F{z) and () bave enlire extensions such that G(z) ==
F{-2), Show that

I' ) I]F(t)/r‘(h . 2'£)|"'(l'd o W"i'h J'""-‘J |j'(t)12{!f,

that F(2)/1'(h - iz) and F*{z)/I'{h — iz} arc of bounded type in the upper
half-plane, and that these ratios are of mean type at most —log (Ja®) in the
hail-plane,

PROBLEM 339, Lot F(z) be an entire function such that

for some £ = 0, and such that the ratios F{2)/T(k - iz) and F*{2) 1 (h — {z)
are o hounded type in the upper halbplane, T these ratios are of mean type
at most —log ($2%) in the halfplane, show that

B(z) = 9T — iz [ f(e)ye-tridy,
F(—2) = =BT — iz) [D“’ g(e-Hirgy
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for y = 0, where f{x) and g(x) belong to 130, ), are Hankel transforms

PROBLEM 340, Let v == 24 — 1 where /i = 0, and let ¢ = 0. Consider the
set of entive funclions F(2) such that

such that F{z)/I’(A — 2z} and F*{(2){['{k - iz} arc of bounded type in the
upper half-plane, and such that these ratios are of mean type at most
~log a in the half-plane, Show that this set is a Hillert space of entire
functions which satisfics the axioms (H1), (H2), and {H3}, and which
contains a nonzero clement. Show that the space is cqual isometrically o a
space JC(#) for a function £(z) such (hat F*{z) == 2(--z). Show that
Flz 4 )[(h — i2) belongs to the space whenever £7{z) belongs to the space
and vanishes at £ - 2h. Show that the identity

holds for all elements F(z) and G(z) of the space which vanish at { — dk.
Show that £(z) s of Pélya class,

PROBLEM 341, Lot JE(E) be a given space of dimenston greater than one
such that F¥(z) == E(~-2). Lethbeagiven positive number, & 55§ Assume
that F(z -l )/(k — iz) belongs to the space whenever F(z) belongs to the
space and vanishes at § - 4k, and that the identity

holds for alt elements F(z) and G(z) of the space which vanish at &« if.
Show that there exist numbers ¢ and o, & real and ¢ imaginary, such that
L{z) = A(u + B(z)r has value ane at -k, such that

[F(z 4 i) = L{2)P( — ih)]](k — iz)

belongs to the space whenever F(2) belongs to the space, and such that the
identity

(LE(E -+ £) — L{DEG — b))/ (h — i), C{e))
== (I8, [G(t + i) — LG — ik - it))
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holds for all elements F(z) and G(z) of the space. Show that there exist regp
numbers g, 7, and s such that pr = 5* and such that the recurrence relaliong

[A(z 4 1) — L(2YAG — i) (h - i2)
b AR A — k) — A(2) Bl — i) ]of(1 b iZ) e A(2)s - iD )y

[B(z + 8) — L{Z)B{ — it)]}{h = i)
A [BC2YAG -~ ih) — A(2) BU - iy {L o ho = i) m A2} p -y B{z)s
hold. Show that
Vo LGk — )% v (20— D)[AGh — )5 — iB{Th — £)]u
------ W2k o DLAGR — D p = LBk - )i,

Show that s == 2fa if £(2)/1"(h — {z) i of bounded type and of mean Lype
log (4/a) in Lho upper hall-plane,

PROBLEM 342, IfJC(F) is @ given space which satisfics the hypotheses of
Probler 341 for some index kb, show that ££(z) == $(2)By(2) where 1004,
it & space which satisfics the hypotheses of the problem for the same index,
£4(2) is of Pélya class, and $(z) is an even entire [unction which is real for
real z and periodic of period ¢,

PROBLEM 343, Assume that 5 5 (0 in Problem 341, Show that there exist
numbers I and V, LV — VO .40, such that

S5 o[ iV 2507 and —wl o 8V e D517,
Show that the function P(z) == A{2) 1/ |- £(z) V satisfies the identities

[P(z - i) = L(2)P( — i)k — iz)
- [B(2)AG — i) — A(2) B )| (oI 4 2P (L — b = iz) = 2P(2),
[P*(z -1 8 o () PR( e i)k — i2)
b PR A i) — AR B i) (0T - uPY(L — b = iz) = O,

Show that ({(FO — UV} = 0. Show that

lim g-tP{iy - O/ LP(y) = 25

Yoee)e
Show that #, r, and 5 are positive,
PROBLEM 344, Lot JC(F(e)) be a given space which satisfies the hypotheses

of Problem 341 for some index & Assume that s(e) = 0. Let JC{R() be a
space contained dsornetrically in JE(f(a)) such that fi(h, 2)/E(q, 2) has no
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real meros and sueh that £%(b, z) « F{b, —z). Show thal JC(H(b)) satisfics
the hypotheses of Problem 341 for the same index A Show that s(6) 5= 0
angd that the mean type of f£(a, z)[E{b, z) in the upper half-plane is equal o

log [s(a)/s{B)1.

BROBLEM 345, Show that the domain of multiplication by z is dense in
any space which satisfies the hypotheses of Peoblem 341 with 5 == 0

FROBLEM 346, Let JO{/) be a given space which satisties the hypotheses of
Problem 341 for some index ko Assume that ¢ 2 0. For each number g,
/i - a = oo, show that there exists a space J8(%(a)) contained isomctrically
in JC(F) such that £{a, 2)/E{z) has no real zeros, such that F*{a, 2) =
E(a, - z), and such that the recurrence relations of Problem 341 hold with

holds for seme continuous, nonincreasing, matrix valued function
alty A
m(i) e
Ay

such that B{f) = (. Show that the intersection of the spaces JE(J{4))
containg no nonzero clement. Show that w{8) and ¢(5 are differentiable
functions of ¢ such that

------ (1) = pOS(E) and ety () = 1(D)]5(0).
Show that «(8) and () are differentiable functions of ¢ such that
w'{f) == tho(fya' () and W) = —ihu{f)y'(1).
Show that te'(¢) and #'(f) are differentiable functions of ¢ such that
(1o ()] s = T8, iR D) b'{E),
[ (6] = L{t, th = D)3 ().

PROBLEM 347, Tn Problem 346 let A,(a, z) and B, (g, 2) be the unique
entire functions, which are real for real z, such that

(1 - izf)f (e, 2)ula) -+ Bla, 2)w{a)} = (e, ZHula) -+ By{a, )v(a).

Show that a space JE(%)(a)) cxists and that the transformation F(z) —»
{1 4 iz/MF(2) takes JC{L(a)) isometrically onto the subspace of those
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clements of JE(Z(a)) which vanish at it Show that JC(F,(a)) satisfies the
hypotheses of Problem 341 with 4 rcplzwcd by & -+ 1. Show that

A (ay, —ih)ula) == Byla, —ifjo(a) = |,

K (o, —th, z) = L(a, z) K\ (a, —ih, —if).

Show that Lij(4, z) iz a continuous function of ¢ for every = and that the
)l'lt(?‘:g'l‘ﬂl etation

(dy(b, 2), Bylb, 20 — (dilay 2}, Belay 2)1 == 2] (448, 2, Bo(t, 2))my (1)

o L

RO NG
m () =
a6 pult)

a matrix valued function whose entries are differentiable functions of ¢
such. that

holds with

a(8) o= [io(0)fuls) =2 (8),
Wity = Lin(t) fu() P’ (8).

LAGUERRE POLYNOMIAL SPACES

There also exist more clementary spaces associated with Laguerre
palynomials,

PROBLEM 343. M IC( 7) bo a p:!vm space such Lhar () l'am a NOnzero

Assume that the func,l.mn zF ( .) helongs to lhc: space whengver .I'(z) l.rcrlnng'-:
Lo the space and that the identity

<£F’(¢) G‘(f,)> | (F(l) 1(;'(”) o ((f, e 2/1‘.).{‘1@), (;(t))

holds for every element G(z) of the space when F(z} belongs to the domain
of multiplication by z in the space, Show that there exist real numbers
tys Uy oy 0., such that the functions

8 (2) we Alzdy, - B(2)n, and  8_(2) = A(2)u_ |- B(z)o_
arc lincarly independent and salisly the differential equations
1S,(2) + (z = INSLZ) — 281(2) = A,8,(2),
BS_(z) -+ (2 -~ 20)S.(z) — 2852} = A.5.(2),
— 248 (2) — 28} {z) == (4, — B)S_{=),
—(z — 21S_(2) + 2(z — RS (2) — 28 (z) == (h. - RS, (2)

for some real numbers A, and A_such that 3, =1 - 4.
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PROBLEM 349, If 4 is a given positive number, show that the Laguerre
polynomials @, (2), deflined by

B (2) =0 F(—n; 20 2)
forn =0, 1,2, -, are real for real z and satisty the identities
B, (2) A (2 — 2R (2) — 2@ (2) == (b -+ n)P,(2),
------ D) (z) - 2 (2} = ntb, 4 (2),
w2 - 2D (2) A 2z YD (2) — 2D (2) = (2 - ) By, {2)s
2, (2) == {2k |- n) D (2) 4+ 2(h - n) B, (2) — nb,_ (2.

Show that there exist spaces J6(L,), n == 1,2, 3, «+ + | satisfying the hypoth-
eses of Probiem 348, such that J8(F,) is contained isometrically in JC{L, )
for every n, such that (=) spans JC(H;), and such that t,(2) spans the
orthogonal complement of JC(E,) in JC(L, ;) for n 2 0. Bhow that the
spaces can be chosen 5o that

WD (4} ][2 s B(1 o 2y DREY (20 4 1)

for every n Show that the identity

I‘(Q}l} {-FU), G(f)> = J.w _[r‘(;) G(t)!‘ .... £gBh1,)

[\
holds for all polynomials F(z) and G(z).
PROBLEM 350. I JC(%) is a given space which satisfies the hypotheses of
Problem 348, show that there exists an index r in Problem 349 and o positive

constant § such that the transformation F(z) «» SF(z) is an isometry of
JC(EY onto JCLE),

PROBLEM 351. In Problem 340 if f(z) == ¥ a,2" is a polynomial of degree
loss than 7, show that its eigenteanstorm #7(z), (lohm d by Fz) = % a,®,(z),
belongs to JO(4£,) and that

j‘}m (OJELDML = || S(=) ]|

where the norm of £{z) is taken in C(2k, 13 1; 2). Show that every clement
of J&{E,} is of this form. Show that the identity

(@A) () — {1 — w)* jm FUE) exp [—4(F - w)) 224t

holds for all complex numbers w whenever f(z) is a polynomial and Flz) is
its cigentransform. Let f{z) and g(z) be polynomials, and let {z) and G(z)
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be their elgentransforms, Show that che condition
G(2) = hli(z) 1. (2 - 2WF'(2) = 2F"(2)
i necessary and sulliciont (hat
£(z) == Af(z) - zf'(2)
Show that the condition
G(z) = R0l (2) = 287 (2)
is neeossary and sulficient that e

((2) =S ().

Show that the condition
G(z) mz ez o OVF(2) - 2(2 - WY (2) o 2" (z)
is nocesgary and sufliciont that
g(z) b 2!;2_/"(2) -} ».CU’(E'_)

Show that the condition

2y we 2d72)
is necessary and sufficient that
g(z) == QAL o z) fl2) o (1 2)37(2),

Show that F(0) == f(1} for every pelynomial /{z) and that f(z) has a zero of
order r at the point one if, and only if, F(z) has a zero ol order 7 at the origin,

STIELTJES SPACES

Some remarkable examples of Hilbert spaces of entire [unctions originate
in work of Sticltjes on continued fractions,

PROBLEM 352, Lot « and ¢ be given purabers, « <2 1 and 0 <2 g = 1,
and let JE(H) be a given space such that £(z) has a nonzero value at the
origin, Assumc that the functions Fgz) and Fg-lz) belong to the space
whenever f#(z) belongs to the space and that the identity

(6, Gl1)) = (Lo -+ OF(gt), Glgt))

holds for every element CGfz) of the space when F(z2) belongs to the domain of
multiplication by z in the space. Show that there exist real numbers u,,

Ty i, o such that the functions

$1(2) = Al2uy + B(zyo, and S_(2) = A{2h_ + Blzje,
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are linearly independent and smisfy the identities

, (d--(w) K
Aty (2) = . ] e 142}
p«”+“ﬁ“V“&W4m,f+¢%W%%m&m
Ty (t-nz T
\ S.(8) — 8 (g2 l I
,1___;5__(2) i T <"' ) |- - qp- ;S(f{-‘:)

g9~ S e kSl =8
U™ (-0

(N WAy " A ) S (z)
Pg g =gty

- oxe

g S, (grz) S_,_(z) - (:a*g-k-(fl""zz) LS‘-|.‘((['""1‘Z) J
(1 - q)z (1 —qz

e — gt A 1 i gl
R e L
lwwgwf-gqg | —gur-t+q

F4 W t g

[ — — 5. {022} - b
e Udlﬁlww_
ISIM,(E.’-) AS‘...,(G"Z') T (f{m) -—

B

(I —g= i (1 — ¢z

hold for some real numbers 4, and A_ such that 4 — gd. = L.

The construction ol such spaces is made from Heine's generalization of
the hypergeometric series. The series is similar to Gauss’s series except that
it satisfies a difference equation rather than a differential equation. A unit
of discreteness, or quantum, g 1s used in forming these differences. To what
follows we take the quantum (o be a xed number, 0 = ¢ <7 1. The notation

{1 ) (1 o J,) p
(=g}l —¢)
i (1 - ad(1 — qa}{] — #)(1 — qb) g
I T s
is used for Feine's series, ¢ 75 ¢~ for every a =20, 1,2, +++. The corre-
sponding confluenl series are

pla, by e 2) == 1 -

@las¢; &) == lim gpla, b; ¢; —zfb)

h—r (2

1—q (1 = a){1 — ga)g

Tl o " T=dl =Pl -g"
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where g™ 0% appears ag a factor in the coeflicient of 2" and

ple; 2) == lim pla; 5 ~-zfa)

(SRR

where ¢~ appears as a factor in the cocllicient of 74,

PROBLEM 353. If x is a given number, x =7 1, show that the polynomials
b, (2), defined by | o

(2} = @lg™; ki g')

forn =0, 1,2, -, are real for real z and satisfy thd identities

g 1k ") @
-1- by e
( 1 — 7 '} P (_'['2 q ,,_(Z)

— ([)ﬂ((‘?z) |
Ty T Palen)

£t g @) — Pulgz) kg D) - Dy(2)

+ K
Llg (1 gz Lbg  (T—pz
J—_ & (glz) e D (2 z) — -
_4 ‘D,,_-g(z) - n(ﬁf z) n.( ) rps (I),;(ff ) (an lz_) ,
1w g (1 — 9z (1 — gz
L YT WP A X SR P
C— p pelep ) == —q AU k=g wla7) ";E"‘:"{'{ w(772)

([)-n(z) - ([)n(qz) .,CE (D“((PZ) o (I)?L((Ifﬁz)

(1 —1ez g (le-g)z

zmﬂ(z’) = (f_l'm(l qn"‘:) i:(bn(z) (D”“(Z)]

-} (/1”‘“;“3(1 - qn) [(.I)‘"(Z) """ (l)n--l ( Z)ji.

H

Show that there exist spaces JO(E), n == 1, 2, 3, + -+, satisfying the hypoth-
eses of Problem 352, such that J(E)) is contained isometrically in J0(%,,,)
for every n, such that @,(z) spans JE(H}, and such that @, (2) spans the
orthogonal complement of JC(&)) in JO(H, 1) when 2 = & Show that the
spaces can be chosen so that |0 (8) ) = | and so that

. Y s Rty
AR (1 &)L — que) == (1o g lie)
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for n = 0. Show thal there exists a space JE(£,,) containing the union of the
spaces JC(F,) isometrically as a dense set. 100 <2k <D 1, show that the
wWlentity

p(0; 05 — ¢ @(0; 05 g5 (05 04 9)
05 05 (0 07 gres ) p(0; 05 3k

&), GO

b

S Bl Glag) e p(0; 05 sl

e {53

holds for all clements F{z) and G{z) of $(&,) when 5 = 0.

PROBLEM 354. If JC(E) is a given space which satisfics the hypotheses of
Problem 352, show that there exists a positive constant . and a finite index
» in Problem 353 such that the transformation F(z) — 817(z) is an sometry
of JC(L,) onto JE(K).

These spaces are related to a gencralized space of sguare summable
power serics. Let o, b, and ¢ be pumbers such that the cocllicients of
wlus by ¢ 2) are all positive, By (e, & ¢; ¢2) we mean the Hilberl space of

power series f(z) == 5 a,2" with complex eoelficients such that
(L = - jal®
E RN T BT Lt LI
LA = fonl® T
N (L ) {1 = g3 {1 = ) {1~ go) |ayl® -
(1 = a)(l o gud (1 — DY(1 o gh) 4* T

The clements of the space are convergent power serics in the disk gli]* <
The sevies @la, b; ¢; g@z) belongs to the space when glw|® <2 1, and L}u,
identity

Slw) == {fl2), pla; b; ¢; qioz))

holds for overy clement f{z) of the space.

PROBLEM 355. In Problem 353 if /{z) = ¥ a,2" belongs to 8, 0; 05 72),
show that its cigentransform Fiz) — Z e, 0, (2 ) belongs to JE(& ) and that

[2 a0 = 1))

where the norm of f(2) is taken in Q{x, 0; 05 ¢2). Show that every clement
of &£} is of this form, $how that the function ¢(gx®; - -q0z) belongs o
JC(H,)) when ghw]® <7 1 and that the identity

Sy == gplac, O3 05 que) I, plgrdr; —q@l))
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holds for the cigentransforern, T2y of any glement (2} of @(r, 0505 gz), 1,4
Flz) and g(2) be elemens of Qx, 0; 0; q2)» and let F(z) and G(2) b thedy
cigentransforms. Bhow that (he condition

§ () — F(yz

,g732) - Flga
P L S S
(I —q)z

Show that the condilion

Sr) ms — AT TR K+'?_H Finz "_” P A,
G(z) l_q”ﬂ’“)‘?(]w o ) PR (¢"z)
Fiz) o Flgs) | Flgz) ~ Figha)

Tk (I—qz 4 (I-qz

15 necessary and sufficient that

) - wflgz)

Show that the condition G(z) == zl(z) s necessary and sufficient that

¢z = 2 f 1) (D)) b (1 ) = e DS
-l - S

Show that F(0) — f(1) for every clement F(z) of JGI,). Shaw ﬂ'}m‘ J(z}
vanishes al the points |, ¢, - -+, ¢ if, and only if; F(z) has a zero of ovder »
al the origin.



Notes on the Theorems

CHAPTER 1
Turorew 1. Applications of the Phragmén-Lindelst principle are given
by Boas [2] and Levin [56].
Trrorems 2, 3, and 4. These are classical results of analylic function
theory. Bee 88P8 [29) for analogous results in the unit disk.
Treonems 5 and 6. The theory of L{p) spaces [17] is used in the perturba-
tion theory of sclf-adjoint translorimations, de Branges and Shulman (321,
Larorems 7-11, The background of the Pélya class theory is presented by
Boas [2] and Levin [56]. They also treat asymprotic behavior outside of the
bounded type theory. See Whittaker and Watson [75] for a solution of
Probiem 19,
Trromams {2 and 13, Cawehy’s [ormula in a halfsplane and the factorization
of positive functions ave classical applications of the bounded type theory,
Trouwrnm 14, These conditions for Palya class appear in previous work 18],
Turoresm 15, See Boas [2] and Lovin [56] for relations between growth ancd
zeros of entire funglions,

GHAPTER 2
Truonrems 16, 17, and 18, The Litheory of finlte Fourier transforms is
cue to Paley and Wiener 597
Frsorems 19, 20, and 21, The original construction [10] of the space
AC(E) didd not use the bounded type theory.
Turorem 22, The formula for mean squares of entire functions was
originally stated |97 without the JEU) theory,

313
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Turorem 23, The axioms (F1), (H2), and (LL3) state that multiplication
by zis a elosed, symmetric lransformation of deficiency index (1, 1) which
is veal with respect to a conjugation [£0]. Symmetric transformations having
arbitraty deficiency indices can be studied in the same way using the vector
theory of Hilbert spaces of entice functions [26), [30].

Turorem 24 The uniquencss of spaces with given phase functions was
originally abtained [18] without the hounded type theory, See Levin [0}
for the theory of pairs of entire functions which are real for real 2 and which
have alternating real zeros,

Tunorem 25, “The theory of functions $(z) associated with JC(E) was
oviginally developed [11] in the case 8(z) = 1. The general ease is given iy
Trutl’s thesis [72],

Trrores 26, The original theorem {12] coneludes that a function belongs
to JC(L) from an estimale on the imagioary axis,

Turorem 27, The characterizalion of functions associated with JC(L8) was
originally given [11] In the case $(z) = |, The goneral case 1y taken fram
Trutt’s thesis [72],

Tuvoren 28, The construction of the space JCq (A Y was originally made
in the case S(z) . See [ 26] for a veclor generalization of the theory.

Trrowem 29, Several variants of the density theorem for the domain of
multiplication by z are known [11], [12].

Turowem 30, The use of C(p) spaces to study measures associated with
(LG 15 o new device (o obtain an old result originating in Sticljes’ theory
of the moment problem [69],

Tuzorem 31 Sce [26] for a vector gencralization of the theory of L{g)
spaces associated with JC(E),

Trpowrem 32 The original results {11) on measures associated with JE(L)
are stated for special choices of 3(z2). The gencral case is laken from Trutcs
thesis [72].

Trizorems 33 and 34, The original proofs [HE] of the theorems on isometric
inclusions did not use the space Cg(M).

Turorem 35, The ordering theorem was otiginally stated [14] in special
cases in which the hounded type hypothesis is autornatically satisfied, Lhe
ardering theorem generalizes a theovem of M, G, Kreln {83). Llis resule s
equivalent (o the special case of the theorem in which /0% (z) fi( -2y, The
Carleman method [35) is not necded to prove the theorem in this case.

Trrorum 36, The original proof of existence of subspaees 14 prm:c:tr!clud
through the Palya class theory,
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TarowreEMs 37 and 58, The integral reprosentation for My 4y g amecial
case of the product representation of characteristic operyy, [11;111:‘l‘i¢;;.|w.
of nonsell-adjoint transformations 7' such that ' - T% js op lacy t.:!nsq. ‘{q-;
[207, [23], and [24] for an expasitory account of the theory ang g, g-(;m;t.»;, ;ii,-.;..
tions, A proof indepencent of the trace class theoty is also Ko, 26 )

Tueorkm 39, The original proof [14} of the formula, for Mean Lype pro
ceeded without Lemma 9.

Trarorem 40, The original method [13] of obtaining the Intoprat eauation
for £z} went through the Polya class theory. A vector generalization of (he
integral representation is known [26] when sufticiently many invariang
subspaces exist and a complete continuity condition is satisfied,

Treorem 41, The original proof [12] of existence of solutiong of the integral
equation for £(z) did not use the results of Problem 170, Greneralizations of
the theoremn can be obtained from the results of Problems 305318 on
Laguerre clagses,

Turorem 42,  See [12] for the original proof of existencee and unigueness
of measures associated with the integral cquation, Che theorem originates
in Sticltjes’ theory of continued fractions [69],

Troram 45, Compleleness of L7(m) is stated without proof in provious
work [13} The present definition of a regular point is different since an
intesval (4, 4) can now be regular when m{l) is constant in {a, D).

TreoreMs 44 and 45, See [26] for a diflferent conception of the expansion
theorera for Hilbert spaces of entive functions,

Treorem 46, The comparison (heorem for Hilbert spaces of entire func.
tions [19] has a genecalization to the vector theory,

CHAFTER 3
Turorem 47, The theory of symmetry is [16],

Trporems 48 and 490 The original treatment [15] of periodic spaces
depends on the theorem that a periodic entire function of exponential type
I a trigonometric polynomial, The proof that periodicity is hereditary in
subspaces follows an argument of Bidswick’s thesis [%6]. 'The results of
Problem 221 were supplied by R. Bolstein.

THeorem 50, An apparently more general definition of homogencous
space was originally given [15]. A space JO(I) was sakd 1o be homogencous
il for every number a, 0 < a < 1, there exists a number k() = 0 such that
k(a)F(az) belongs to the space whenever F(z) belongs to the space and such
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thal &{a)f*(az) ablways has the same norm as F(z), 1t s shown there that
kla) == @™ for some real constant »,

Turonim 31, FPhe theory ol analytic weight functions is casily generalized
ter the vector theory of Hilbert spaces of entire functions [26] using the trace
class concept,

Tueonums 52, 53, and 54 A definitive (ecatment of the hypergecometrie
function theory is given by Cauwss [42]. The hypergeomelric seeles s,
however, due to Buler {40] who discovercd all the essential features of the
theory in a Hiletime of research along lines which seem to have been sugpested
by his teacher, Johann Bernoulli, The prasent approach to hypergeometric
functions through the theory of entire functions is new,

Trrorems 53, 56, and 57, The conflluent form of the hyporgeomeiric
function is due to Kummer [55]. 1 use the notation Fle; ¢; 2) for Kummer's
series e Ma, by e; 2/0) as b = op, and the notation £{c; z) [or the seriey
lim F(a; ¢; zfa} a8 « — 9. The confluent hypergeometric expansion is used
in M. Rosenblum’s theory of the Hillieet matrix [64]. 1 am indebted to him
for discussions of the Hilbert matrix theory (Institute for Advanced Study,
1959) which stimulated the present work on Gauss and Kummer spaces,
The Hardy space 0, iy taken [rom the theory of selfreciprocal functions e
the Flankel transtormation, Hardy and Titchmarsh 47} See Whitlaker
and Watson [74] lor the theory of Whittaker functions,

Turowems 58, 5%, aned 60. The use of the hypergeometrie function in
connection with Jacobi polynomials is duc to Jacobi {50].

Treowums 68, 62, and 63, The theory of local operators on Fourier
translorms is taken from my thesis [5] and the companion paper [6]. Phe
construction of local operators was originally made outside of the hounced
type theory, Fhe theorem on nonvanishing Fourier transforms is a variant
of a theorem of Levinson [57], who obtains a weaker vesuli by a different
method, The results of Problems 301, 302, and 504 are also eelated to
Levinson’s work, See {18] for hine o sohitions,

Trrowem 64, I first learned of the Beurling-Malliavin theorem [1] at the
19G] Swomer Institute on Functional Analysis at Stanford, when 1 owas
working on a conjecture now stated as Problem 295, See [ 18] for a proof of
the conjeclure from their theorerm,

Tnrorea 65, This variant of the Beurling-Malliavin theorem was oviginally
stated [18] on the hypothesis thal

f“m (1 g 52)...‘-'[{(}-‘,(]), .f‘) -7-([,,)("2(“ <o,

==
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in which case it follows from Prablem 299, The present stage

| ment was |ater
announeed withour proof [21].

Tisoress 66 and 67, LThe extreme point method was c;r-igi:l;.llgy applicd
o the Bernstein approximation problem. [8] The densicy pl‘ﬂpm‘l;)f c.'ali‘
extrermal measures, which, is due to Natmark [58], gives a shorg proof of the
Stone-Welerstrass theorem |7]. A fundamental problem iy g f‘lnd. thc;
extreme points of the convex st of measures which determine the noem of
any given space JC(L). See Trute [ 73] for the cureent statuy of the ]‘)l‘(‘)[‘)]t.:l‘l.'l.

Tigorem 68, This construction of spaces JC(EY contained wometrically
in L34} 15w new application of the methods ol [18]. '

Lacunrme crasses,  See Boas [2] and Levin [38] for Laguerre’s contribution
to the theory of entire functions with real vevos. The theory of Laguerre
classes can be used to gencralize the results of Theorem 41,

Lacunnrr spacrs,  Previously published work on Lagueree spaces [25] s
restricied to spaces in which multiplication by z iy densely defined, These
new results are tuken from Klopfenstein’s thesis [51].

MemNew AN Poriaczik seacns, Sobutions ol these problems and Hlerature
relerences are given by de Branges and Uratt [33).

Sowme seacis, The vesults of Problem 337 acve due to Sonine [68]. The
sonine spaces {221 have been extensively studied by 1. and V, Rovayak
[65, and by V. Rovoyak [66], See Bolstein and de Branges |33, [1) for
related hypergeometric spaces,

LACUBRRE POLYNOMIAL seAcks.  Solutions of these problems can be given
using the methods of de Branges and Trutt {333, 194]. The theory of Lagucrre
polynomials, as we know it owes more to Sonine [68] than it does Lo Lagueree,

Srmsroryns spaces,  Stieltjes [69] gives a continucd fraction expansion which
Is equivaient to knowledge of these orthogonal polynomials when ko= ()
Seo Szepd [70] Tor a discusston of the polynemials in this case, "The general
case s due lo Hlahn [45). Solutions of these problems can be given by the
same methods as are wsed [or the Laguerre, Meixner, and Pollaczek spaces.
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