
RESEARCH PROPOSAL

RIEMANN HYPOTHESIS

The Riemann hypothesis is the conjecture made by Riemann that the Euler zeta func-
tion remains without zeros in a larger half–plane than the half–plane of convergence of the
Euler product. The zeta function was introduced by Euler as an analogue of his previ-
ously discovered gamma function, which is a product determined by zeros. The Riemann
hypothesis is treated as the conjecture that the Euler zeta function has properties similar
to those of the gamma function.

The gamma function is the simplest analytic function giving information about the set
of positive integers. The function Γ(s) of s is analytic in the complex plane with the
exception of singularities at the nonpositive integers and satisfies the recurrence relation

sΓ(s) = Γ(s + 1).

An interpolation of the factorial follows from the identity

Γ(n + 1) = n!

for every nonnegative integer n. The interpolation is interesting because of the associated
hypergeometric function theory introduced by Euler. The Euler zeta function is linked to
the gamma function in a relation discovered by Euler.

A generalization of the gamma function is obtained in which the factor of s in the
functional identity is replaced by an arbitrary analytic function of s in the right half–plane
whose real part is positive. Such a function admits a function theory which generalizes the
hypergeometric function theory of the gamma function.

The function theory originates in the Stieltjes representation of positive linear function-
als on polynomials. A nontrivial linear functional on polynomials is said to be positive if
it has nonnegative values on polynomials whose values on the real axis are nonnegative.
A positive linear functional defines a scalar product on the space of polynomials of degree
less than r for every positive integer r. The scalar self–product of a polynomial F (z) is
defined as the action of the positive linear functional on the polynomial

F ∗(z)F (z)

with the conjugate polynomial

F ∗(z) = F (z−)−

defined by conjugate values on the real axis.
1



2 RESEARCH PROPOSAL RIEMANN HYPOTHESIS

Stieltjes determined the structure of the space of polynomials of degree less than r when
the scalar product is nondegenerate. A polynomial E(z) of degree r, which has no zeros
on or above the real axis, exists such that the scalar self–product of a polynomial F (z) is
equal to the integral ∫ +∞

−∞

|F (t)/E(t)|2dt.

A Stieltjes space of entire functions is defined as a Hilbert space whose elements are
entire functions and which has these properties:

(H1) Whenever an entire function F (z) of z belongs to the space and has a nonreal zero
w, the entire function

F (z)(z − w−)/(z − w)

of z belongs to the space and has the same norm as F (z).

(H2) For every nonreal number w a continuous linear functional is defined on the space
by taking an entire function F (z) of z into its value F (w) at w.

(H3) The entire function

F ∗(z) = F (z−)−

of z belongs to the space whenever the function F (z) of z belongs to the space, and it
always has the same norm as F (z).

An example of a Stieltjes space is constructed from an entire function E(z) of z which
satisfies the inequality

|E(z−)| < |E(z)|

when z is in the upper half–plane. The space H(E) is defined as the set of entire functions
F (z) of z such that the integral

‖F‖2 =

∫ +∞

−∞

|E(t)/E(t)|2dt

converges and such that the inequality

|F (z)|2 ≤ ‖F‖2[|E(z)|2 − |E(z−)|2]/[2πi(z− − z)]

holds for all complex numbers z. Every nontrivial Stieltjes space of entire functions is
isometrically equal to a space H(E).

Methods of functional analysis were introduced in the complex analysis of the Riemann
hypothesis independently by Hilbert and Hardy. The Hardy space for the upper half–plane
is the Hilbert space of analytic functions F (z) of z in the upper half–plane such that the
integral ∫ +∞

−∞

|F (x + iy)|2dx
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converges when y is positive and is a bounded function of y. The scalar self–product of
the function is the least upper bound taken over all positive y, which is obtained in the
limit as y decreases to zero.

A generalization of the Hardy space for the upper half–plane is defined for application
to Stieltjes spaces of entire functions. An analytic weight function is defined as an analytic
function W (z) of z in the upper half–plane which has no zeros in the upper half–plane.

A trivial example of an analytic weight function is the function which is identically one.
The weighted Hardy space F(1) is the Hardy space for the upper half–plane. If W (z) is
an analytic weight function, the weighted Hardy space F(W ) is the isometric image of the
space F(1) under multiplication by W (z).

The defining function E(z) of a Stieltjes space H(E) is an analytic weight function
W (z). The space H(E) is contained isometrically in the weighted Hardy space F(W ) and
contains every entire function F (z) such that the entire functions F (z) and F ∗(z) belong
to the space F(W ).

If W (z) is an analytic weight function, the set of entire functions F (z) such that the
entire functions F (z) and F ∗(z) of z belong to the weighted Hardy space F(W ) is a Stieltjes
space of entire functions which is contained isometrically in the weighted Hardy space. The
space is a space H(E) if it contains a nonzero element.

A motivating example of an analytic weight function

W (z) = Γ( 1

2
− iz)

is defined by the gamma function. Hypergeometric function theory constructs Stieltjes
spaces of entire functions which are contained isometrically in the weighted Hardy space
F(W ). The spaces appear in Fourier analysis on the complex plane.

In 1880 Nikolai Sonine constructed nontrivial examples of functions which are square
integrable with respect to plane measure, which vanish in a disk |z| < a about the origin,
and whose Fourier transform vanishes in the disk. These are functions of distance from
the origin whose Fourier transforms are computed by the Hankel transformation of order
zero.

A Stieltjes space of entire functions which is contained isometrically in the weighted
Hardy space F(W ) is constructed from the Sonine functions for every positive number a.
The spaces have a maximality property: An entire function belongs to the space whenever
its product with a nonconstant polynomial belongs to the space. A Stieltjes space of entire
functions which is contained isometrically in the weighted Hardy space F(W ), which has
the maximality property, and which contains a nonzero element, is a space obtained from
the Sonine examples for some positive number a.

These Stieltjes spaces do not have finite dimension and do not contain nontrivial polyno-
mials. The recurrence relations for orthogonal polynomials applied by Stieltjes are replaced
by ordinary differential equations of first order. The defining functions of the Stieltjes
spaces are solutions of the differential equations in confluent hypergeometric series. The
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analytic weight function W (z) is recovered asymptotically from the defining functions of
the Stieltjes spaces as the scattering function of a one–dimensional dynamical system.

Analogous constructions are made from generalizations of the gamma function. An
Euler weight function is defined as an analytic weight function W (z) such that for every
h in the interval [0, 1] the function

W (z + 1

2
ih)/W (z − 1

2
ih)

of z is analytic and has nonnegative real part in the upper half–plane.

It is not sufficient to impose the condition only when h is one since the analytic weight
function can then be multiplied by an arbitrary entire function which is periodic of period
one and has no zeros. But if an analytic weight function satisfies the condition when h is
one, it can be multiplied by an entire function which is periodic of period one and has no
zeros to produce an analytic weight function which satisfies the condition for all h in the
interval [0, 1].

An equivalent condition for an analytic weight function to be an Euler weight function
follows from the Poisson representation of a function φ(z) of z which is analytic and has
positive real part in the upper half–plane: A Hilbert space exists whose elements are
functions analytic in the upper half–plane and which contains the function

[φ(z) + φ(w)−]/[πi(w− − z)]

of z as reproducing kernel function for function values at w when w is in the upper half–
plane: A function which belongs to the space has a value at w which is a scalar product
with the reproducing kernel function.

An Euler weight function is an analytic weight function W (z) such that for every h in
the interval [0, 1] a Hilbert space of functions analytic in the upper half–plane exists which
contains the function

[W (z + 1

2
ih)W (w − 1

2
ih)− + W (z − 1

2
ih)W (w + 1

2
ih)−]/[πi(w− − z)]

of z as reproducing kernel function for function values at w when w is in the upper half–
plane.

An equivalent condition for an Euler weight function is formulated by the concept of a
maximal accretive transformation. A linear relation with domain and range in a Hilbert
space is said to be accretive if the sum

〈a, b〉 + 〈b, a〉 ≥ 0

of scalar products in the space is nonnegative for all elements (a, b) of the graph of the
relation. An accretive relation is said to be maximal accretive if it is not the proper
restriction of an accretive relation with domain and range in the same Hilbert space. A
transformation is said to be maximal accretive if it is maximal accretive as a relation.
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An analytic weight function W (z) is an Euler weight function if, and only if, a maximal
accretive transformation is defined in the weighted Hardy space F(W ) for all h in the
interval [0, 1] by taking F (z) into F (z + ih) whenever the functions of z belong to the
space.

The analytic weight function defined from the gamma function is an Euler weight func-
tion. For an arbitrary Euler weight function there are associated Stieltjes spaces of entire
functions.

A Stieltjes space of entire functions is associated with an Euler weight function W (z)
when it is contained contractively in the weighted Hardy space F(W ) and when the inclu-
sion is isometric on functions F (z) such that the functions F (z) and zF (z) of z belong to
the Stieltjes space. The orthogonal complement in the Stieltjes space of the set of functions
for which the inclusion is isometric has dimension zero or one. The associated Stieltjes
space is required to contain an entire function F (z) which belongs to the weighted Hardy
space whenever the product of F (z) with a nonconstant polynomial belongs to the Stieltjes
space. A maximal accretive transformation is then defined in the Stieltjes space when h
belongs to the interval [0, 1] by taking F (z) into F (z + ih) whenever the functions of z
belong to the Stieltjes space.

The Stieltjes spaces of entire functions which are associated with an Euler weight func-
tion are totally ordered: For any two spaces one is contained in the other.

The intersection of the Stieltjes spaces of entire functions which are associated with an
Euler weight function contains no nonzero element.

The union of the Stieltjes spaces of entire functions which are associated with an Euler
weight function is dense in the weighted Hardy space for the Euler weight function.

The defining functions of the Stieltjes spaces of entire functions associated with an Euler
weight function are parametrized by positive numbers so that the space with parameter b is
contained in the space with parameter a when a is less than b. The parametrized functions
satisfy an ordinary differential equation of first order as in the case of the gamma function.

The hypergeometric function theory of the gamma function applies to Fourier analysis
on the complex plane. The maximal accretive property of the shift originates in the
properties of a Radon transformation in the Hilbert space of functions f(z) of z which are
square integrable with respect to plane measure and which satisfy the identity

f(ωz) = f(z)

for every element ω of the unit circle. The transformation takes f(z) into g(z) when these
functions of z belong to the space and satisfy the identity

g(ωz) =

∫ +∞

−∞

f(ωz + ωit)dt

for every element ω of the unit circle. The integral is interpreted as a limit in the metric
topology of the Hilbert space of integrals over bounded subsets of the real line. The adjoint
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of the Radon transformation is an inverse transformation of the differential operator in the
Fourier model of heat flow. The maximal accretive property of the Radon transformation
generates a flow of heat in which energy can never be gained but can only be lost.

The maximal accretive property is verified using the Laplace transformation, which
permits a spectral analysis of the Radon transformation. The Radon transformation is
unitarily equivalent to multiplication by i/z in a Hilbert space of analytic functions of z
in the upper half–plane. The maximal accretive property of the Radon transformation is
a consequence of the positivity of the real part of the multiplier in the half–plane.

A generalization of the Radon transformation applies in a locally compact skew–field.
Every skew–field contains the algebra of quaternions

ξ = t + ix + jy + kz

whose coordinates are rational numbers. The skew–field is assumed to be an algebra of
quaternions whose coordinates are in a field and to contain

ξ− = t − ix + jy − kz

whenever it contains ξ. The coordinates are elements of the field of self–conjugate elements
of the skew–field. The skew–field is assumed to be a vector space of finite dimension over
the smallest skew–field. There is a double vector space structure since multiplication by
an element of the smallest skew–field can be in the left or right of a vector. The same
dimension is obtained in each case. The skew–field is given the discrete topology.

The discrete skew–field and its completions are treated as a model for the orbital elec-
trons in the atoms of a molecule. An analogy is seen between the electronic structure of
molecules and the analytic structure of locally compact skew–fields. The analogy gives a
purpose to the harmonic analysis of skew–fields which goes beyond applications to number
theory.

Harmonic analysis on a skew–field applies its relationship to a maximal commutative
subalgebra. The subalgebra is a field which is mapped into itself by conjugation, which
acts as an automorphism of the field.

The complementary space to the field in the skew–field is the set of elements ξ of the
skew–field which satisfy the identity

ξη = η−ξ

for every element η of the field. An element of the skew–field is the unique sum of an element
of the field and an element of its complementary space. Multiplication by an element of
the field maps the field into itself and the complementary space into itself. Multiplication
by an element of the complementary space maps the field into the complementary space
and the complementary space into the field. Elements of the complementary space are
skew–conjugate.

When the skew–field is locally compact, the field, the skew–field, and the complementary
space have canonical measures which are unique within constant factors. A canonical
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measure is a nonnegative measure on Baire subsets which is finite on compact sets and
positive on open sets such that a measure preserving transformation is defined by taking
ξ into ξ + η for every element η of the space. Canonical measures are normalized so that
the canonical measure for the skew–field is the Cartesian product measure of the canonical
measure for the field and the canonical measure for its complementary space. The modulus
λ(s) of a nonzero element of the field is the positive number such that multiplication by
ξ multiplies the canonical measure of the field by a factor of λ(ξ)2. Multiplication by ξ
multiplies the canonical measure for the skew–field by a factor of λ(ξ)4. The modulus of a
nonzero element ξ of the skew–field is the positive number λ(ξ) such that multiplication by ξ
multiplies the canonical measure of the skew–field by a factor of λ(ξ)4. Canonical measures
are normalized so that multiplication by a nonzero element ξ of the complementary space
takes the canonical measure for the field into λ(ξ)2 times the canonical measure for the
complementary space. The origin of the skew–field is given zero modulus.

The identity
λ(ξ) = λ(ξ−)

holds for every element ξ of the skew–field. The identity

λ(ξη) = λ(ξ)λ(η)

holds for all elements ξ and η of the skew–field.

A locally compact skew–field is said to be complex if its field of self–conjugate elements
is isomorphic to the real line. A locally compact skew–field is said to be p–adic for a prime
p if its field of self–conjugate elements contains an isomorphic image of the field of p–adic
numbers. A locally compact skew–field which is not discrete is either complex or p–adic
for a prime p.

The canonical measure for a discrete skew–field is counting measure. The modulus of
a self–conjugate element of the skew–field is a rational number. An element of the skew–
field is said to be integral if it is a quaternion whose coordinates are all integral or all
nonintegral with product by two integral. Sums and products of integral elements are
integral. A rational number is a self–conjugate element of the skew–field which is integral
if, and only if, it is an integer.

An ideal of the ring of integral elements of a discrete skew–field is said to be conjugated
if it contains ξ− whenever it contains ξ. A conjugated ideal which contains an element but
which does not contain every element has a finite quotient ring which inherits a conjugation.
The discrete skew–field has p–adic completions constructed from the topologies of quotient
rings.

A completion of a discrete skew–field is a locally compact skew–field which contains an
isomorphic image of the discrete skew–field as a dense subset. A discrete skew–field has a
finite number of complex completions and a finite number of p–adic completions for every
prime p.

Radon transformations for a locally compact skew–field apply to irreducible representa-
tions of the group of elements ξ of the skew–field with conjugate as inverse: ξ−ξ = 1. The
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representations are defined in the Hilbert space of functions which are square integrable
with respect to the canonical measure for the skew–field. The transformation defined by
an element ω with conjugate as inverse takes a function f(ξ) of ξ in the skew–field into
the function f(ωξ) of ξ in the skew–field.

An irreducible representation for the complex skew–field is determined by a harmonic
polynomial in the coordinates. An analogue of a harmonic polynomial exists for a p–adic
skew–field.

The Radon transformation defined by a harmonic φ is a maximal accretive transfor-
mation whose domain and range are contained in the Hilbert space of square integrable
functions with respect to the canonical measure for the skew–field. The functions f(ξ) of
ξ in the skew–field which belong to domain and range satisfy the identity

φ(ξ)f(ωξ) = ϕ(ωξ)f(ξ)

for every element ω of the skew–field with conjugate as inverse.

The Radon transformation takes f(ξ) into g(ξ) when the functions of ξ in the skew–field
satisfy the identity

g(ωξ)/φ(ωξ) =

∫
f(ωξ + ωη)/φ(ωξ + ωη)dη

for every element ω of the skew–field with conjugate as inverse with integration with respect
to the canonical measure for the complementary space. The integral is taken as a limit in
the metric topology of the Hilbert space of square integrable functions with respect to the
canonical measure for the skew–field. The limit is a limit of integrals over compact subsets
of the complementary space.

The maximal accretive property of the Radon transformation is verified by a generaliza-
tion of the Laplace transformation. The adjoint of the Radon transformation is unitarily
equivalent to multiplication by a function whose values have positive real part in a Hilbert
space of functions square integrable with respect to a nonnegative measure.

The functions are analytic in the upper half–plane when the skew–field is complex.
The classical Laplace transformation applies in that case. The Radon transformation is
self–adjoint and nonnegative when the skew–field is p–adic.

Zeta functions for a discrete skew–field are generated in harmonic analysis on Cartesian
products of completions. In the Cartesian product are taken all complex completions and
all p–adic completions for an arbitrary finite number of primes p. The Cartesian product
is a locally compact ring which has a conjugation. The canonical measure is the Cartesian
product measure of the canonical measures for factor skew–fields.

The product ring contains a maximal commutation subring whose elements are the
elements of the product whose components belong to maximal commutative subfields.
The canonical measure for the commutative subring is the Cartesian product measure of
the canonical measures for commutative subfields.
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The complementary space to the maximal commutative subring is the set whose ele-
ments are the elements of the product whose components belong to complementary spaces
to commutative subfields. The canonical measure for the complementary space to the
subring is the Cartesian product measure of the canonical measures for complementary
spaces to subfields.

An element of the product ring which has conjugate as inverse is an element whose
components in skew–fields have conjugate as inverse. The group of elements of the product
ring with conjugate as inverse is compact. The elements of the group act as isometric
transformations of the Hilbert space of square integrable functions with respect to the
canonical measure for the product ring into itself. The transformation defined by an
element ω with conjugate as inverse takes a function f(ξ) of ξ in the product ring into the
function f(ωξ) of ξ in the product ring.

The Hilbert space of square integrable functions with respect to the canonical measure
for the product ring decomposes into irreducible invariant subspaces of finite dimension
under the action of elements of the group. A harmonic function is a function φ(ξ) of
elements ξ of the ring with conjugate as inverse which is a harmonic function of every
component of ξ in a skew–field. Harmonic functions belong to a Hilbert space constructed
from Hilbert spaces of harmonic functions for every component skew–field. An isometric
transformation of the Hilbert space into itself is defined by taking a function f(ξ) of ξ into
the function f(ξω) of ξ for every nonzero element ω of the discrete skew–field.

Hecke operators are commuting self–adjoint transformations in the Hilbert space of
harmonic functions for the product ring. A Hecke operator ∆(n) is defined for every
positive integer n which is the modulus of the inverse of a self-conjugate integral element
of the discrete skew–field. The Hecke operator ∆(n) takes a harmonic function f(ξ) of ξ
into the harmonic function g(ξ) of ξ defined by summation

g(ξ)
∑

1 =
∑

f(ξω)

on the left over the integral elements ω of the discrete skew–field which represent

1 = λ(ω−ω)−1

and on the right over the elements ω of the discrete skew–field which represent

n = λ(ω−ω)−1.

The Hilbert space of harmonic functions for the product ring is the orthogonal sum of
invariant subspaces whose elements are characterized as eigenfunctions of Hecke operators
for given eigenvalues. The Hecke operator ∆(1) is the orthogonal projection onto the
subspace of functions f(ξ) of ξ which satisfy the identity

f(ξω) = f(ξ)

for every element ω of the product ring with conjugate as inverse. The kernel of ∆(1) is
contained in the kernel of ∆(n) and the range of ∆(n) is contained in the range of ∆(1) for
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every positive integer n for which ∆(n) is defined. The range of ∆(1) is the orthogonal sum
of eigenfunctions of the Hecke operator ∆(n) for a real eigenvalue τ(n) for every positive
integer n such that ∆(n) is defined.

The Radon transformation of harmonic φ for the product ring applies a harmonic func-
tion φ which is an eigenfunction of ∆(n) for the eigenvalue τ(n) for every n for which
∆(n) is defined. The definition of the Radon transformation is analogous for the defini-
tion for a component skew–field and produces a maximal accretive transformation. The
proof applies a generalization of the Laplace transformation constructed from the Laplace
transformations for component skew–fields.

The Laplace transformation for a p–adic skew–field is a variant of the Fourier trans-
formation for a p–adic subfield. In the p–adic case the Radon transformation and its
adjoint are self–adjoint and nonnegative. The adjoint is shown to be unitarily equiva-
lent to multiplication by λ(ξ)−1 on functions of ξ in the field which are square integrable
with respect to the canonical measure. The multiplier is undefined at the origin since the
modulus then vanishes. No difficulty occurs when the canonical measure for the field is
used since the set whose only element is the origin has zero measure. But in constructions
which follow topologies appear in which the set has positive measure. The adjoint of the
Radon transformation is then not densely defined. This causes the appearance of accretive
transformations which are not maximal.

The Hilbert space of square integrable functions with respect to the canonical measure
for the product ring is acted upon by a group of isometric transformations defined by
nonzero elements ω of the discrete skew–field. The transformation defined by ω takes a
function f(ξ) of ξ in the product ring into the function f(ξω) of ξ in the product ring.
The Hilbert space decomposes into irreducible invariant subspaces under the action of the
group. The invariant subspaces are however not contained in the given Hilbert space. The
given Hilbert space decomposes as an integral of invariant subspaces, not an orthogonal
sum.

Only one of the invariant subspaces is applied in harmonic analysis on the product
skew–plane. The value of other invariant subspaces is unknown. The invariant subspace
of known value contains functions which are left fixed by all isometric transformations of
the group. The subspace originates in the application of Poisson summation by Jacobi to
construct theta functions. An analogue of Jacobian theta functions is applied in harmonic
analysis on the product ring.

The invariant subspace is a Hilbert space of functions f(ξ) of ξ in the product ring
which satisfy the identity

f(ξω) = f(ξ)

for every nonzero element ω of the discrete skew–field and which are square integrable
with respect to the canonical measure for the product ring over the set of elements whose
components in p–adic skew–fields are integral and have integral inverse.

The invariant subspace inherits a Radon transformation from the product ring as well
as a Laplace transformation showing that the adjoint of the Radon transformation is
unitarily equivalent to multiplication by a function in a Hilbert space whose elements
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are square integrable functions with respect to a measure. The accretive property of the
adjoint of the Radon transformation follows from the positivity of the real part of values
of the multiplying function. The adjoint of the Radon transformation fails to be maximal
accretive when the multiplier is undefined on a set of positive measure and when the Hilbert
space contains functions which do not vanish on the set.

A zeta function coupled with a gamma function factor appears on application of the
Mellin transformation. The product is an analytic weight function which is the Mellin
transform of a theta function. The zeta function is a Dirichlet series whose coefficients are
eigenvalues of Hecke operators. An Euler weight function is obtained when the adjoint of
the Radon transformation is maximal accretive.

When the maximal accretive property fails, the weighted Hardy space decomposes into
the orthogonal sum of a subspace whose elements are symmetric about the imaginary
axis and a subspace of functions which are anti–symmetric about the imaginary axis. A
maximal accretive transformation in the subspace of anti–symmetric functions is defined
by taking F (z) into F (z + i) whenever the functions of z belong to the space.

The maximal accretive property is initially verified for an analytic weight function de-
fined by a finite number of primes. The zeta function for a finite number of primes is
a partial sum of the zeta function for an infinite number of primes. The partial sums
converge to the full sum in the limit which accepts all primes. The maximal accretive
property is preserved in the limit. The limiting zeta function has the positioning of zeros
which is conjectured by the Riemann hypothesis.

The Riemann hypothesis originates as a conjecture for the Euler zeta function, which is
not produced in harmonic analysis on skew–fields. A zeta function which is so produced is
obtained by the duplication formula for the gamma function and its counterpart for zeta
functions. A proof of the Riemann hypothesis results for the Euler zeta function.

The formulation of the Riemann hypothesis in harmonic analysis on skew–fields sur-
passes the original context of Euler and Riemann in number theory. The significance of
the generalization is an issue of importance in the determination of future directions of
research.

A striking feature of the proof of the Riemann hypothesis is its resemblance to the
quantum mechanical theory of electrons in atoms and molecules. The complex skew–field
is an algebra of quaternions with real coordinates which contains the physical space in
which electrons are seen as moving objects. Quaternions parametrize rotations of a three
dimensional space about a chosen origin. Quaternions apply to a solar system in which
electrons orbit about a nucleus.

The harmonic analysis created by a discrete skew–field is the quantum mechanical theory
of an assembly of electrons. Each complex completion of the discrete skew–field describes
the motion of an electron. The resulting quantum mechanical model has a feature which
is not found elsewhere. Namely the electrons are related to each other under the action of
a group. This is the group of automorphisms of the discrete skew–field.

There is a physical context in which a group of automorphisms can be expected. It
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occurs when the electrons are held toether in a molecule. A conjecture is implied by these
observations. This is that the structure of molecules is an aspect of the structure of discrete
skew–fields. The key to electronic structure in molecules is symmetry. And symmetry is
formulated in automorphisms.

The decomposition of a molecule into atoms suggests a decomposition of a discrete skew–
field into elementary skew fields. In terms of symmetries this suggests the decomposition
of a group into elementary groups. Commutative subgroups are a natural candidate for
decomposition.

A group of automorphisms is always noncommutative since it contains the inner auto-
morphisms defined by integral elements of the Gauss skew–plane with conjugate as inverse.
The subgroup is normal and has a quotient group of outer automorphisms which can be
commutative.

Although discrete skew–fields are mysterious, discrete skew–fields having a commuta-
tive group of outer automorphisms are accessible for research. Such skew–fields can be
constructed for example from cyclotomic fields. A relationship is expected between these
skew–fields and the periodic table of the elements.

The advantage of a discrete skew–field in treating atomic structure is that electrons are
coordinated to create a single oscillator. The symmetry of the resulting structure imposes
a constraint on its function theory. It is however not true that symmetry considerations
alone determine atomic structure.

The need for additional considerations is seen in the case of a one electron atom. The
discrete skew–field is then the algebra of quaternions which have rational numbers as
coordinates. This is the skew–field applied in the proof of the Riemann hypothesis for the
Euler zeta function, which has another function theory that that of the Dirac electron. It
is a simpler function theory in which the electron moves through free space without the
action of an electromagnetic field. The Dirac electron has the symmetry properties of the
skew–field of quaternions with rational coordinates, but it has a more complicated function
theory.

The desired application to quantum mechanics indicates a weakness in the harmonic
analysis of skew–fields which is sufficient for a proof of the Riemann hypothesis. There
is a more general function theory which allows the gamma function factor to be replaced
by an arbitrary Euler weight function. The general theory is conjectured to exhibit the
same zeta functions. The difference lies in the treatment of the complex completions of
the discrete skew–field.

The generalization is proposed as objective for coming research. Funding is requested
for that purpose.
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PROJECT SUMMARY

Overview: The aim of the project is a proof of a conjecture made by Riemann in the
nineteenth century which consolidates mathematics of the eighteenth century principally
due to Euler. The original conjecture is treated in a generalization made in the twentieth
century. A proof of the conjecture restores mathematics to its classical position as queen
of the sciences.

Intellectual Merit: A unification of mathematics is made which consolidates apparently
unrelated disciplines such as complex analysis, Fourier analysis, and number theory so as
to create a coherent whole.

Broader Impact: A successful treatment of the Riemann hypothesis reveals a natural
application of mathematics to the structure of chemical molecules.


