Study Guide - Remaining Course Topics

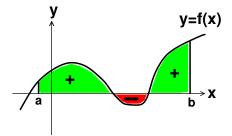
$oxed{\mathbf{I}}$ Integration Theory:

(a) Riemann Sums

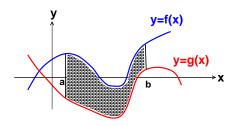
(i) Let f(x) be continuous on [a, b], divide this interval into n subintervals $[x_{k-1}, x_k]$ of equal length $\Delta x = \frac{b-a}{n}$, where $x_k = x_0 + k\Delta x$ for $k = 1, 2, 3, \dots, n$ $(x_0 = a, x_n = b)$. For each k, choose a point x_k^* in $[x_{k-1}, x_k]$.

Then $\sum_{k=1}^{n} f(x_k^*) \Delta x$ is a Riemann Sum of f over [a, b]

- (ii) Definite integral : $\int_a^b f(x) \, dx = \lim_{\Delta \to 0} \sum_{k=1}^n f(x_k^*) \, \Delta x_k$, where limit is taken over all possible partitions of [a,b], all possible sublengths $\Delta x_k = (x_k x_{k-1})$ with all possible choices of x_k^* in $[x_{k-1},x_k]$ and $\Delta = \max \left\{ \Delta x_1, \Delta x_2, \cdots, \Delta x_n \right\}$
- (b) $\int_a^b f(x) dx$ = Net area under the curve over [a, b]; properties of definite integrals.



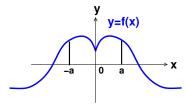
Note that $\int_a^b \{f(x) - g(x)\} dx$ = Area between the curves y = f(x) and y = g(x) over [a, b]:

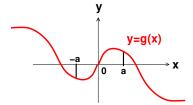


 $\frac{d}{dx} \left\{ \int_{a}^{x} f(t) dt \right\} = f(x)$ (c) Fundamental Theorem of Calculus (Part I):

(This is also known as **Leibnitz' Rule**)

- (d) Fundamental Theorem of Calculus (Part II): $\left| \int_a^b f(x) \, dx = F(x) \right|_{x=a}^{x=b} = F(b) F(a)$ where F(x) is any antiderivative of f(x).
- (e) A function f(x) is **Even** if f(-x) = f(x); a function g(x) is **Odd** if g(-x) = -g(x) and hence by symmetry: $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx \qquad \int_{-a}^{a} g(x) dx = 0$:





(f) Average Value of f(x) over [a, b] is $\int_{a}^{b} f(x) dx$

$$\overline{f} = \frac{1}{b-a} \int_{a}^{b} f(x) \, dx$$

(g) Mean Value Theorem For Integrals: If f is continuous over [a, b], then there is a number c in (a,b) such that

$$\underbrace{\frac{1}{b-a} \int_{a}^{b} f(x) \, dx}_{\overline{f}} = f(c)$$



- (h) Substitution Rule
 - $\left| \int f(g(x)) g'(x) dx = \int f(u) du \right|, \quad u = g(x) \text{ and } du = g'(x) dx.$ (1) Indefinite Integrals
 - (2) Definite Integrals $\left| \int_a^b f(g(x)) g'(x) dx = \int_{g(a)}^{g(b)} f(u) du \right|$, u = g(x) and du = g'(x) dx.
- (i) Generalized Leibnitz' Rule: $\frac{d}{dx} \left\{ \int_{\phi_1(x)}^{\phi_2(x)} f(t) dt \right\} = f(\phi_2(x)) \phi_2'(x) f(\phi_1(x)) \phi_1'(x)$

$\overline{ extbf{II}}$ Exponential Models:

- (a) The function y(t) has exponential growth when y'(t) = k y(t); hence $y(t) = y_0 e^{kt}$ where k is the growth rate, $y(0) = y_0$, and if $\begin{cases} k > 0 \implies y(t) \text{ has exponential growth} \\ k < 0 \implies y(t) \text{ has exponential decay} \end{cases}$
- (b) If k > 0 then the <u>Doubling Time</u> is time required to double size of y and is $T_2 = \frac{\ln 2}{k}$; the <u>Tripling Time</u> is $T_3 = \frac{\ln 3}{k}$
- (c) If k < 0 then the <u>Half-Life</u> is time required to halve the size of y and is $T_{\frac{1}{2}} = \frac{\ln(\frac{1}{2})}{k}$;

Basic TABLE OF DERIVATIVES and INTEGRALS \leftarrow Click here

Practice Problems - Remaining Topics

(1)
$$\int_{1}^{4} |x-3| dx =$$
 A. $\frac{3}{2}$ **B.** $\frac{5}{2}$ **C.** $\frac{9}{2}$ **D.** 5 **E.** $-\frac{3}{2}$

- (2) If f(x) is continuous on $a \le x \le b$ and a < c < b, then $\int_{c}^{b} f(x) dx =$
 - **A.** $\int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$ **B.** $\int_{a}^{c} f(x) dx \int_{a}^{b} f(x) dx$ **C.** $\int_{c}^{a} f(x) dx + \int_{b}^{a} f(x) dx$
 - **D.** $\int_{a}^{b} f(x) dx \int_{a}^{c} f(x) dx$ **E.** $\int_{a}^{c} f(x) dx \int_{b}^{c} f(x) dx$
- (3) $\int_0^2 x^2 e^{x^3} dx =$ **A.** $\frac{1}{3} (e^8 1)$ **B.** $(e^8 1)$ **C.** $\frac{1}{3} (e 1)$ **D.** (e 1) **E.** $\frac{1}{3} \left(e^{\frac{1}{4}} 1 \right)$
- (4) $\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \cot x \, dx = \mathbf{A.} \quad \ln\left(\frac{1}{2}\right) \quad \mathbf{B.} \quad -\ln\left(\frac{1}{2}\right) \quad \mathbf{C.} \quad -\ln\left(2-\sqrt{3}\right) \quad \mathbf{D.} \quad \ln\left(\sqrt{3}-1\right)$ $\mathbf{E.} \quad \ln\left(\frac{1}{4}\right)$
- (5) If $y(x) = \int_{3}^{\tan x} \sqrt{\sqrt{t} + 6t} \ dt$, find $y'\left(\frac{\pi}{4}\right)$. **A.** $\sqrt{7}$ **B.** $2\sqrt{7}$ **C.** $\sqrt{\frac{3\pi}{2} + \sqrt{\frac{\pi}{4}}}$ **D.** $2\sqrt{\frac{3\pi}{2} + \sqrt{\frac{\pi}{4}}}$ **E.** 2
- (6) If $A(x) = \int_0^x f(t) dt$, where the graph of y = f(t) is as shown, at what x value does A(x) attain its maximum value on the closed interval $-2 \le x \le 4$?
 - A. x = -2 B. x = 0 C. x = 1 D. x = 3 E. x = 4

(7) If a > 0 and $\int_{1}^{\sqrt{a}} \frac{1}{x} dx = 3$, then $\int_{1}^{a} \frac{1}{x} dx =$

B. 6 **C.** $\sqrt{3}$ **D.** 12

 \mathbf{E} . $\ln 9$

(8) If 40% of a radioactive substance decays in 50 days, what is the half-life of the substance?

A. $50 \frac{\ln 0.5}{\ln 0.4}$ **B.** $50 \frac{\ln 0.5}{\ln 0.6}$ **C.** $50 \frac{\ln 0.6}{\ln 0.5}$ **D.** $50 \frac{\ln 0.4}{\ln 0.5}$ **E.** $50 \frac{\ln 0.4}{\ln 0.6}$

(9) Use a Riemann Sum to estimate the area under the graph of $y = \sqrt{x}$ from x = 1 to x = 4 using three approximating rectangles and left endpoints.

A. $\sqrt{1} + \sqrt{2} + \sqrt{3}$ **B.** $\sqrt{2} + \sqrt{3} + \sqrt{4}$ **C.** $\sqrt{1} + \sqrt{2} + \sqrt{3} + \sqrt{4}$ **D.** $\frac{1}{3} \left(\sqrt{1} + \sqrt{2} + \sqrt{3} \right)$

E. $\frac{1}{3} \left(\sqrt{2} + \sqrt{3} + \sqrt{4} \right)$

(10) Using 50 rectangles and the right endpoint of each subinterval as the sample point, the Riemann sum approximation of a certain definite integral is

$$\frac{1}{50} \left(\sqrt{\frac{1}{50}} + \sqrt{\frac{2}{50}} + \dots + \sqrt{\frac{50}{50}} \right) .$$

What is the definite integral that is being approximated?

- **A.** $\int_0^1 \sqrt{\frac{x}{50}} \ dx$ **B.** $\int_0^1 \sqrt{x} \ dx$ **C.** $\frac{1}{50} \int_0^1 \sqrt{\frac{x}{50}} \ dx$ **D.** $\frac{1}{50} \int_0^1 \sqrt{x} \ dx$ **E.** $\frac{1}{50} \int_0^{50} \sqrt{x} \ dx$

Answers

- **1.** B **9.** A
- **2.** D **10.** B
- **3.** A
- **4.** B
- **5.** B
- **6.** C
- **7.** B
- 8. B