Study Guide - Exam # 1

[<u>Review of Functions</u>

- (1) A function f assigns to a number x a unique number f(x); the set of all admissible x is the Domain of f and the set of all possible values f(x) is the Range of f. The domain of f(x)+g(x) and f(x)g(x) is the intersection of the domains of f and g. The domain of the quotient $\frac{f(x)}{g(x)}$ is the intersection of the domains of f and g where $g(x) \neq 0$.
- (2) A curve C represents the graph of a function if C passes the Vertical Line Test (VLT). A function is one-to-one (hence has an inverse) if its graph passes the Horizontal Line Test (HLT).
- (3) The composite function $(f \circ g)(x) = f(g(x))$ is defined when the range of g(x) is contained in the domain of f. Note that in general $(f \circ g)(x) \neq (g \circ f)(x)$.
- (4) Symmetry in Curves C:

(a)

- C is symmetric with respect to y axis: If (x, y) is on C, then (-x, y) is also on C.
- C is symmetric with respect to x axis: If (x, y) is on C, then (x, -y) is also on C.
- C is symmetric with respect to the origin: If (x, y) is on C, then (-x, -y) is also on C.

- (5) If f(-x) = f(x), then f is an <u>even</u> function and its graph is symmetric w.r.t. the y axis. If f(-x) = -f(x), then f is an <u>odd</u> function and its graph is symmetric w.r.t. the origin.
- (6) The domain of all polynomials $p(x) = c_n x^n + c_{n-1} x^{n-1} + \cdots + c_1 x + c_0$ is the set of all real numbers x i.e., $-\infty < x < \infty$ or, equivalently, $(-\infty, \infty)$.

A rational function is the quotient of polynomials: $f(x) = \frac{p(x)}{q(x)}$ and has domain the set of all real numbers x for which the dominator polynomial $q(x) \neq 0$.

- (7) Transformations of Functions y = f(x) (useful for graphing):
 - y = f(x) + c vertical shift of c units
 - (b) y = f(x c) horizontal shift of c units
 - (c) y = cf(x) vertical scaling: if $|c| > 1 \implies$ stretches; if $|c| < 1 \implies$ compresses
 - (d) y = f(cx) horizontal scaling: if $|c| > 1 \implies$ compresses; if $|c| < 1 \implies$ stretches

(8) The *inverse* of a function f, denoted by f^{-1} is defined by $y = f^{-1}(x) \iff f(y) = x$. A function y = f(x) has an inverse if it is one-to-one i.e., its graph passes the *Horizontal Line Test* (HLT). Sometimes only a part of the graph passes the HLT, so that part of the function has an inverse. Note that $f^{-1}(f(x)) = x$ and also $f(f^{-1}(y)) = y$.

How to Find Inverse of y = f(x)

- Solve the equation y = f(x) for x, to get $x = f^{-1}(y)$.
- Interchange x and y in equation $x = f^{-1}(y)$ to obtain the answer $y = f^{-1}(x)$.

To get the graph of $y = f^{-1}(x)$, reflect the graph of y = f(x) across the line y = x:

- (9) Exponential and Logarithmic Functions
 - (a) If b > 0 and $b \neq 1$, the *Exponential Function* is $y = f(x) = b^x$. Domain of all exponential functions is the set of all real numbers x and the range is the set of all positive numbers :

(b) Law of Exponents:

- $b^{x+y} = b^x b^y$ • $b^{x-y} = \frac{b^x}{b^y}$ • $(b^x)^r = b^{xr}$
- (c) If b > 0 and $b \neq 1$, the Logarithm Function with base b is defined by: $y = \log_b x \iff b^y = x$ The domain of $y = \log_b x$ is all x > 0 while the range is all real numbers. $(\log_e x = \ln x \text{ is the Natural Logarithm Function where } e = 2.718 \cdots)$

(d) Inverse Relations: (let
$$b > 0$$
 and $b \neq 1$)

- $b^{\log_b x} = x$, for x > 0
- $\log_b(b^x) = x$, for all real numbers x
- (e) Law of Logarithms:

•
$$\log_b(xy) = \log_b x + \log_b y$$

•
$$\log_b\left(\frac{x}{y}\right) = \log_b x - \log_b y$$

•
$$\log_b (x^p) = p \, \log_b x$$

(f) Change of Base in Logarithms:

$$\log_b x = \frac{\ln x}{\ln b}$$

٦

(10) Trigonometric Functions

(a) The point $(\cos \theta, \sin \theta)$ is the point on the circle of radius 1:

•

$$\sin \theta = \frac{b}{h}; \quad \cos \theta = \frac{a}{h}; \quad \tan \theta = \frac{b}{a} = \frac{\sin \theta}{\cos \theta}$$

Also
$$\sec \theta = \frac{1}{\cos \theta}; \quad \csc \theta = \frac{1}{\sin \theta}; \quad \cot \theta = \frac{1}{\tan \theta}$$

θ		$\sin \theta$	$\cos \theta$
(0°)	0	0	1
(30°)	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$
(45°)	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$
(60°)	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$
(90°)	$\frac{\pi}{2}$	1	0

(c) Recall,
$$\begin{cases} \sin(\theta + 2\pi) = \sin\theta \\ \cos(\theta + 2\pi) = \cos\theta \\ \tan(\theta + \pi) = \tan\theta \end{cases}$$
 and also
$$\begin{cases} \cos(-\theta) = \cos\theta \\ \sin(-\theta) = -\sin\theta \end{cases}$$
 [cosine is an even function]

- (d) <u>Basic Identities</u>
 - $\sin^2 \theta + \cos^2 \theta = 1$
 - $\tan^2 \theta + 1 = \sec^2 \theta$ and $1 + \cot^2 \theta = \csc^2 \theta$
 - $\cos 2\theta = \cos^2 \theta \sin^2 \theta$ and $\sin 2\theta = 2\sin \theta \cos \theta$
 - $\cos^2 \theta = \frac{1 + \cos 2\theta}{2}$ and $\sin^2 \theta = \frac{1 \cos 2\theta}{2}$

(e) Inverse Trig Functions

- $y = \sin^{-1} x$, where $-\frac{\pi}{2} \le \sin^{-1} x \le \frac{\pi}{2}$ • $y = \cos^{-1} x$, where $0 \le \cos^{-1} x \le \pi$ • $y = \tan^{-1} x$, where $-\frac{\pi}{2} < \tan^{-1} x < \frac{\pi}{2}$
- (f) How to simplify expressions like $\sin(\cos^{-1} x)$. For this example, let $\theta = \cos^{-1} x$ and hence $\cos \theta = x = \frac{x}{1}$, now draw the corresponding right triangle:

(h) Transformations of Trig Functions: For example, $y = A\left(\sin B(\theta - C)\right) + D$, then $|A| = \text{amplitude}, \quad \frac{2\pi}{|B|} = \text{period}, \quad \text{horizontal shift of } C \text{ units;} \quad \text{vertical shift of } D \text{ units}$

|**II**|<u>Limits</u>:

- (1) Average Velocity over [a, b] is $v_{av} = \frac{s(b) s(a)}{b a}$; instantaneous velocity at t = a is $v_{ins} = \lim_{b \to a} \frac{s(b) - s(a)}{b - a}$. Slope of secant line through (a, f(a)) and (b, f(b)) is $m_{sec} = \frac{f(b) - f(a)}{b - a}$; slope of tangent line to curve y = f(x) at x = a is $m_{tan} = \lim_{b \to a} \frac{f(b) - f(a)}{b - a}$
- (2) Meaning of $\lim_{x \to a} f(x) = L$; meaning of one-sided limits $\lim_{x \to a^+} f(x) = L$ and $\lim_{x \to a^-} f(x) = L$

<u>Theorem:</u> $\lim_{x \to a} f(x) = L \iff \lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x) = L$

(3) Limit Laws; using these to compute limits.

- (4) <u>Squeeze/Sandwich Theorem</u>: If $g_1(x) \leq f(x) \leq g_2(x)$ with both $\lim_{x \to a} g_1(x) = L$ and $\lim_{x \to a} g_2(x) = L$, then $\lim_{x \to a} f(x) = L$
- (5) <u>Infinite Limits</u>: meaning of $\lim_{x \to a} f(x) = \infty$ (or $-\infty$); one-sided infinite limits $\lim_{x \to a^+} f(x) = \infty$ (or $-\infty$); $\lim_{x \to a^-} f(x) = \infty$ (or $-\infty$);

(6) The line x = a is a Vertical Asymptote of f if any of these 3 limits is infinite (∞ or $-\infty$):

$$\lim_{x \to a} f(x) , \quad \lim_{x \to a^+} f(x) , \quad \lim_{x \to a^-} f(x)$$

<u>Remark</u> For a rational function $f(x) = \frac{p(x)}{q(x)}$, the vertical asymptotes are *among* the zeros of the polynomial q(x) in the denominator. Verify which are actually vertical asymptotes of f.

- (7) Limits at Infinity
 - (a) Meaning of $\lim_{x\to\infty} f(x) = L$ and $\lim_{x\to-\infty} f(x) = L$

<u>**Remark**</u>: The line y = L is a *Horizontal Asymptote* of f(x).

- (b) Infinite Limits at Infinity: $\lim_{x\to\infty} f(x) = \infty$ (or $-\infty$) and $\lim_{x\to-\infty} f(x) = \infty$ (or $-\infty$)
- (c) Limits at ∞ of Powers
 - (i) $\lim_{x \to \pm \infty} x^n = \infty$, when *n* is **even**
 - (ii) $\lim_{x \to \infty} x^n = \infty$ and $\lim_{x \to -\infty} x^n = -\infty$, when *n* is odd
 - (iii) $\lim_{x \to \pm \infty} \frac{1}{x^n} = 0$
 - (iv) If $p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ is a polynomial, then $\lim_{x \to \pm \infty} p(x) = \lim_{x \to \pm \infty} a_n x^n = \pm \infty, \text{ depends on } a_n \text{ and also the degree of } p(x)$

(d) The **<u>End Behavior</u>** of a polynomial or rational function is their behaviors as $x \to \pm \infty$.

Theorem - End Behavior and Asymptotes of Rational Functions
Suppose
$$f(x) = \frac{p(x)}{q(x)}$$
, where $p(x) = a_m x^m + a_{m-1} x^{m-1} + \dots + a_1 x + a_0$ and $q(x) = b_n x^n + b_{n-1} x^{n-1} + \dots + b_1 x + b_0$, where $a_m \neq 0, b_n \neq 0$
(i) If deg $p(x) < \deg q(x) \implies \lim_{x \to \pm \infty} f(x) = 0$ $\begin{bmatrix} y = 0 \text{ is horizontal asymp. of } f \end{bmatrix}$
(ii) If deg $p(x) = \deg q(x) \implies \lim_{x \to \pm \infty} f(x) = \frac{a_m}{b_n}$ $\begin{bmatrix} y = \frac{a_m}{b_n} \text{ is horizontal asymp. of } f \end{bmatrix}$
(iii) If deg $p(x) > \deg q(x) \implies \lim_{x \to \pm \infty} f(x) = \infty$ (or $-\infty$) $\begin{bmatrix} f \text{ has a Slant/Oblique} \\ asymptote and NO horizontal asymp.; to find it perform long division on $\frac{p(x)}{q(x)} \end{bmatrix}$$

(v) If $f(x) = \frac{p(x)}{q(x)}$ is in reduced form (i.e., p(x) and q(x) have no common factors), then the vertical asymptotes of f are precisely the zeros of q(x).

<u>Theorem</u> - End Behavior of $e^x, e^{-x}, \ln x$

<u>**Remark**</u>: $\lim_{x \to \infty} \tan^{-1} x = \frac{\pi}{2}$ and $\lim_{x \to -\infty} \tan^{-1} x = -\frac{\pi}{2}$

III Continuity:

(1) f(x) is <u>continuous</u> at x = a if $\lim_{x \to a} f(x) = f(a)$

Continuity Checklist for f(x) to be continuous at a:

1f(a) is defined2 $\lim_{x \to a} f(x)$ exists (and is finite)3 $\lim_{x \to a} f(x) = f(a)$

- (2) Types of discontinuities: Jump discontinuity, Infinite discontinuity, Removable discontinuity.
- (3) Left and right continuity; Continuity Rules; continuity of polynomials and rational functions; continuity of composite functions; continuity of inverse functions; continuity of inverse trig functions. Piece-wise continuous function.
- (4) **<u>Theorem</u>** Limits of Composite Functions:
 - (a) If g is continuous at a and f continuous at g(a), then $\lim_{x \to a} f(g(x)) = f(\lim_{x \to a} g(x))$
 - (b) If $\lim_{x \to a} g(x) = L$ and f continuous at L, then $\lim_{x \to a} f(g(x)) = f(\lim_{x \to a} g(x)) = f(L)$
- (5) <u>Intermediate Value Theorem</u> If f is continuous on interval [a, b] and L is a number strickly between f(a) and f(b), then there is at least one number c in the interval (a, b) such that f(c) = L:

$|\mathbf{V}|$ <u>Derivatives</u>:

- (1) The derivative of f at a point a: $f'(a) = \lim_{x \to a} \frac{f(x) f(a)}{x a}$ or $f'(a) = \lim_{h \to 0} \frac{f(a+h) f(a)}{h}$
- (2) Physical interpretation of derivative:

 $f'(a) = \begin{cases} \text{slope of tangent line the graph of } y = f(x) \text{ at } a \\ \text{velocity at time } a \\ \text{(instantaneous) rate of change of } f \text{ at } a \end{cases}$

1. The domain of $f(x) = \sqrt{x-1} - \frac{1}{\sqrt{2-x}}$ is A. [1,2) B. (1,2) C. (1,2] D. $[1,\infty)$ E. [1,2]**2.** Find the domain of $g(x) = \frac{1}{\ln \sqrt{x-10}}$ A. $(10, \infty)$ B. $[10, \infty)$ C. (e^{11}, ∞) D. $(10, 11) \cup (11, \infty)$ E. $[10, 11) \cup (11, \infty)$ **3.** If $f(x) = \frac{4}{x-1}$ and g(x) = 2x, for what value(s) of x is $(f \circ g)(x) = (g \circ f)(x)$? A. $x = \frac{1}{3}$ only B. x = 2 only C. x = 3 only D. x = -1 or x = 2E. $x = \frac{1}{3}$ or x = 24. Find the inverse of the function $f(x) = \frac{6x-1}{2x+9}$ A. $\frac{-9x-1}{2x-6}$ B. $\frac{9x+1}{2x+6}$ C. $\frac{2x+9}{6x-1}$ D. $\frac{9x+1}{2x-6}$ E. $\ln(6x-1) - \ln(2x-6)$ 5. If $f(x) = 3 + \sqrt{2 + 7x}$, find $f^{-1}(5)$ A. $\frac{1}{7}$ B. $\frac{2}{7}$ C. $\frac{3}{7}$ D. $\frac{4}{7}$ E. $\frac{5}{7}$ 6. Which of the following does **NOT** have an inverse function? A. $y = \sin x, -\frac{\pi}{2} \le x \le \frac{\pi}{2}$ B. $y = x^3 + 2$ C. $y = \frac{x}{x^2 + 1}$ D. $y = \frac{1}{2}e^x$ E. $y = \ln(x - 2)$. x > 27. The graph of a function g is obtained from the graph if f by first compressing vertically by a factor of 3, then shifting to the right by 2 units, and then shifting up by 1 unit. What is g(x) = ?A. $f\left(\frac{x}{3}+1\right)+2$ B. $f\left(\frac{x+3}{3}+1\right)$ C. $\frac{1}{3}f(x-2)+1$ D. 3f(x+2)-1E. f(3(x-2)) - 18. Solve $\ln(x^2 - 9) - \ln(x - 3) = 2$ A. $e^2 - 3$ B. $e^2 + 3$ C. $\frac{1}{e^2} - 3$ D. $\frac{1}{e^2} + 3$ E. e + 3**9.** Find all values of x in the interval $[0, 2\pi]$ satisfying $2\sin x \cos x + \cos x = 0$ A. $\frac{\pi}{2}, \frac{3\pi}{2}$ B. $\frac{7\pi}{6}, \frac{11\pi}{6}$ C. $\frac{\pi}{2}, \frac{7\pi}{6}, \frac{3\pi}{2}, \frac{11\pi}{6}$ D. $\frac{2\pi}{3}, \frac{4\pi}{3}$ E. No such values in given interval 10. The altitude, in feet, of a drone t seconds after it takes off is given by $h(t) = \frac{t^3}{6} + 4$. What is the drone's average velocity in feet per second over the time interval [0, 3]? B. $\frac{3}{2}$ C. $\frac{9}{2}$ D. 9 A. 1 E. 27

11. Evaluate
$$\sin^{-1}\left(\sin\frac{4\pi}{3}\right)$$

A. $\frac{2\pi}{3}$ B. $-\frac{\pi}{3}$ C. $\frac{4\pi}{3}$ D. $-\frac{2\pi}{3}$ E. $\frac{\pi}{3}$

12. Write the trigonometric expression $\sin(\tan^{-1} u)$ as an algebraic expression in u.

A.
$$\frac{1}{\sqrt{1+u^2}}$$
 B. $\frac{u}{\sqrt{1+u^2}}$ C. $\frac{1}{\sqrt{u^2-1}}$ D. $\frac{u}{\sqrt{1-u^2}}$ E. $\frac{u}{\sqrt{u^2-1}}$
13. Find the limit: $\lim_{x\to 0} \sqrt{2x+23-5}$
A. $\frac{5}{2}$ B. 5 C. $\frac{1}{2}$ D. 10 E. $\frac{2}{5}$
14. Find the limit: $\lim_{x\to 0} x^2 \cos\left(\frac{2}{x}\right)$
A. 1 B. 0 C. $-\infty$ D. ∞ E. DNE
15. Find the limit: $\lim_{x\to 2^+} \frac{t-1}{\sqrt{(t+3)(t+2)}}$
A. ∞ B. -3 C. 3 D. DNE and is neither ∞ nor $-\infty$ E. $-\infty$
16. Find the limit: $\lim_{x\to 2^+} \frac{|2t-4|}{t^2-4|}$
A. ∞ B. $-\frac{1}{2}$ C. $\frac{1}{2}$ D. DNE and is neither ∞ nor $-\infty$ E. $-\infty$
17. Find all vertical asymptotes of $f(x) = \frac{-x^2+16}{x^2+5x+4}$
A. $x = -1$ B. $x = -1, x = 4$ C. $x = 1, x = -4$ D. $x = -1, x = -4$ E. $x = 4$
18. Suppose $f(x) = \frac{2x^3+16x^2+30x}{x^3+5x^2}$. Which of the following statements are correct?
(i) $y = 2$ is a horizontal asymptote
(ii) $\lim_{x\to -5} is a vertical asymptote
(iii) $\lim_{x\to -6} f(x) = \infty$
A. Only statement (i) B. Only statements (i) and (ii)
C. Only statements (i) and (iii)
19. The line $y = -3$ is the LEFT horizontal asymptote (asymptote as $x \to -\infty$) of which function?
A. $y = -3e^x$ B. $y = \frac{1}{x+3}$ C. $y = -\frac{3x}{1+x^2}$ D. $y = \frac{12x^2-x}{1+4x^2}$
E. $y = \frac{e^x-3}{e^x+1}$
20. The function $y = f(x) = \frac{2x^3-1}{x^2-5x+5}$ has a slant (oblique) asymptote given by
A. $y = 2x + 10$ B. $y = 2x - 5$ C. $y = 2x - 1$ D. $y = 2x + 5$ E. $y = 2x$
21. Find the value of c such that f is continuous at $x = 2$: $f(x) = \begin{cases} \frac{x^2-5x+c}{x-2}, & \text{if } x < 2 \\ \tan\left(\frac{3\pi}{2x}\right), & \text{if } x \geq 2 \end{cases}$$

A. c = 6 B. No value of c C. c = 3 D. c = -1 E. c = 4

22. Determine which statements about f are **True** and which are **False** if

$$f(x) = \begin{cases} 1, & \text{if } x \le -1 \\ x, & \text{if } -1 < x < 1 \\ 1, & \text{if } x \ge 1 \end{cases}$$

- (I) f is discontinuous at x = 1
- (II) f is continuous from the left at x = -1
- (III) f is continuous from the right at x = -1

A. (I) is True; (II) and (III) are False B. (II) is True; (I) and (III) are False C. (III) is True; (I) and (II) are False D. (II) and (III) are True; (II) and (III) is False E. (II) and (III) are True; (II) and (I) is False

23.
$$\lim_{x \to 1} \left(\frac{1-x}{1-\sqrt{x}} \right)^2 =$$

A. 4 B. 1 C. $\frac{1}{2}$ D. $\frac{1}{\sqrt{2}}$ E. **DNE**

24. Which of the statements below are TRUE for the function $f(x) = \frac{4x^3 - 4x^2}{x(x-1)^2}$?

- (i) x = 0 is a removable discontinuity
- (ii) x = 0 and x = 1 are both removable discontinuities
- (iii) x = 1 is an infinite discontinuity

A. (i) and (ii) B. (ii) and (iii) C. (i) and (iii) D. None are true E. All are true

25. If the tangent line to the graph if y = f(x) at x = 4 goes through the points (5,3) and (7,7), what is f(4)?

A. -2 B. -1 C. 0 D. 1 E. 2

26. The quantity $\lim_{h \to 0} \frac{\sqrt{9+h}-3}{h}$ represents which of the following? A. f'(3) with $f(x) = \sqrt{x}$ B. f'(6) with $f(x) = \sqrt{x}$ C. f'(-6) with $f(x) = \sqrt{x+3}$ D. f'(-3) with $f(x) = \sqrt{x+9}$ E. f'(6) with $f(x) = \sqrt{x+3}$

27. If $f(x) = \frac{8e^x + 3e^{3x}}{2e^{2x} - e^{3x}}$, which of the following statements are TRUE?

(I)
$$\lim_{x \to \infty} f(x) = -3$$

(II) $\lim_{x \to -\infty} f(x) = \infty$
(III) $f(x)$ has a vertical asymptote at $x = \ln 2$

A. Only (I) B Only (I) and (II) C. Only (I) and (III) D. Only (II) and (III) E. All three are true

28.
$$\lim_{\theta \to 0^{-}} \frac{\left| \sin \theta \right|}{\cos^2 \theta - 1} =$$

A. 1 B. 0 C. ∞ D. $-\infty$ E. DNE

Answers

 1. A
 2. D
 3. A
 4. A
 5. B
 6. C
 7. C
 8. A
 9. C
 10. B
 11. B

 12. B
 13. B
 14. B
 15. E
 16. B
 17. A
 18. A
 19. E
 20. A
 21. A

 22. B
 23. A
 24. C
 25. D
 26. E
 27. E
 28. D