Study Guide - Exam \# 2

I Derivatives

(1) Given $y=f(x)$ and an interval $[a, b]$, then the change in x is $\Delta x=b-a$ and the corresponding change in f (or change in y) is $\Delta y=f(b)-f(a)$ and

$$
\frac{\Delta y}{\Delta x}=\frac{f(b)-f(a)}{b-a}=\left\{\begin{array}{l}
\text { slope of secant line through }(a, f(a)),(b, f(b)) \\
\text { average velocity over the interval }[a, b] \\
\text { average rate of change of } f(x) \text { over the interval }[a, b]
\end{array}\right.
$$

(2) Definition of derivative of $y=f(x)$ at the point $x=a$:

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \quad \text { or equivalently } \quad f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

(3) Interpretation of derivative:

$$
f^{\prime}(a)=\left\{\begin{array}{l}
\text { slope of tangent line to the graph of } y=f(x) \text { at } a \\
\text { velocity at time } a \\
\text { (instantaneous) rate of change of } f(x) \text { at } a
\end{array}\right.
$$

(3) Tangent line and Normal line to graph of $y=f(x)$:

$\underline{\text { Point-Slope Formula for the line through }\left(x_{0}, y_{0}\right) \text { with slope } m: \quad y-y_{0}=m\left(x-x_{0}\right)}$
Recall, if $m=$ slope of tangent line, then $-\frac{1}{m}=$ slope of normal line.
(4) Derivative as a function: $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$; differentiable functions
(i.e., $f^{\prime}(x)$ exists); f differentiable at $x \Longrightarrow f$ continuous at x; know the conditions when f is not differentiable at $x=a$
Higher order derivatives: $y^{\prime \prime}$ or equivalently $\frac{d^{2} y}{d x^{2}} ; \quad y^{\prime \prime \prime}$ or equivalently $\frac{d^{3} y}{d x^{3}} ; \quad$ etc...
When $s(t)$ is the position of an object $\Longrightarrow v=s^{\prime}(t), a=s^{\prime \prime}(t)$ and speed $=\left|s^{\prime}(t)\right|$.

II Basic Differentiation Rules: If f and g are differentiable functions, and c is a constant:
(1) $\frac{d\{c\}}{d x}=0 ; \quad \frac{d\{c f(x)\}}{d x}=c f^{\prime}(x) ; \quad \frac{d\{f(x)+g(x)\}}{d x}=f^{\prime}(x)+g^{\prime}(x)$;
$\frac{d\{f(x)-g(x)\}}{d x}=f^{\prime}(x)-g^{\prime}(x)$
(2) Power Rule: $\frac{d\left(x^{n}\right)}{d x}=n x^{n-1}$, where n is any real number
(3) Product Rule: $\{f(x) g(x)\}^{\prime}=f(x) g^{\prime}(x)+g(x) f^{\prime}(x)$
(4) Quotient Rule: $\left\{\frac{f(x)}{g(x)}\right\}^{\prime}=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{(g(x))^{2}}$, provided $g(x) \neq 0$

III Derivatives of Trig Functions

(1) If x is in radians, then $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$

$$
\lim _{x \rightarrow 0} \frac{x}{\sin x}=1
$$

$$
\lim _{x \rightarrow 0} \frac{\cos x-1}{x}=0
$$

(Note that $\sin k x \neq k \sin x$)
(2) If x is in radians, then

$\frac{d}{d x}\{\sin x\}=\cos x$	$\frac{d}{d x}\{\cos x\}=-\sin x$
$\frac{d}{d x}\{\tan x\}=\sec ^{2} x$	$\frac{d}{d x}\{\cot x\}=-\csc ^{2} x$
$\frac{d}{d x}\{\sec x\}=\sec x \tan x$	$\frac{d}{d x}\{\csc x\}=-\csc x \cot x$

IV CHAIN RULE: If g is differentiable at x and f is differentiable at $g(x)$, then the composite function $f \circ g$ is differentiable at x and its derivative is

$$
(f \circ g)^{\prime}(x)=\frac{d}{d x}\{f(g(x))\}=f^{\prime}(g(x)) g^{\prime}(x)
$$

or, equivalently, if $y=f(u)$ and $u=g(x)$, then $\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}$
 equation $F(x, y)=0$ then
Step 1: Differentiate both sides of $F(x, y)=0$ w.r.t. the independent variable x
Step 2: Solve for the desired derivative $\frac{d y}{d x}$.

Remarks:

- Since $y=y(x)$ is a function of x, then by the Chain Rule $\frac{d}{d x}\left\{y^{n}\right\}=n y^{n-1} \frac{d y}{d x}$.
- After using Implicit Differentiation, the derivative $\frac{d y}{d x}$ usually involves both x and y.

VI More Differentiation Rules:

(1) $\frac{d\left(e^{x}\right)}{d x}=e^{x}$

$$
\frac{d\left(b^{x}\right)}{d x}=b^{x} \ln b
$$

(2) Derivative of Natural Logarithm

$$
\begin{aligned}
& \frac{d}{d x}(\ln x)=\frac{1}{x}, \quad \text { if } x>0 \\
& \frac{d}{d x}(\ln |x|)=\frac{1}{x}, \quad \text { if } x \neq 0 \\
& \frac{d}{d x}(\ln |u(x)|)=\frac{u^{\prime}(x)}{u(x)}, \text { if } u(x) \neq 0
\end{aligned}
$$

(3) Law of Logarithms: (Reminder)

- $\log _{b}(x y)=\log _{b} x+\log _{b} y$
- $\log _{b}\left(\frac{x}{y}\right)=\log _{b} x-\log _{b} y$
- $\log _{b}\left(x^{p}\right)=p \log _{b} x$

(4) Logarithmic Differentiation Method

Step 1: Take natural log of both sides of the equation and simplify using Law of Logarithms
Step 2: Differentiate both sides implicitly w.r.t x
Step 3: Solve the resulting equation for $\frac{d y}{d x}$

VII Derivatives of Inverse Trig Functions

Note, for example, $\sin ^{-1} x$ is same as $\arcsin x$, but $\sin ^{-1} x \neq(\sin x)^{-1}$
(1) Common Basic Derivatives:

$\frac{d\left(\sin ^{-1} x\right)}{d x}=\frac{1}{\sqrt{1-x^{2}}}$	$\frac{d\left(\cos ^{-1} x\right)}{d x}=-\frac{1}{\sqrt{1-x^{2}}}, \quad$ for $-1<x<1$
$\frac{d\left(\tan ^{-1} x\right)}{d x}=\frac{1}{1+x^{2}}$	$\frac{d\left(\cot ^{-1} x\right)}{d x}=-\frac{1}{1+x^{2}}, \quad$ for $-\infty<x<\infty$
$\frac{d\left(\sec ^{-1} x\right)}{d x}=\frac{1}{\|x\| \sqrt{x^{2}-1}}$	$\frac{d\left(\csc ^{-1} x\right)}{d x}=-\frac{1}{\|x\| \sqrt{x^{2}-1}}, \quad$ for $\|x\|>1$

(2) If u is a differentiable function of x, then by the Chain Rule, $\frac{d\left(\sin ^{-1} u\right)}{d x}=\frac{1}{\sqrt{1-u^{2}}} \frac{d u}{d x}$, etc.

VIII Theorem (Derivative of the Inverse Function) If f is differentiable and has an inverse on an interval I, x_{0} is a point in I and $f^{\prime}\left(x_{0}\right) \neq 0$, then the inverse function f^{-1} is differentiable at the point $f\left(x_{0}\right)$ and

$$
\left(f^{-1}\right)^{\prime}\left(f\left(x_{0}\right)\right)=\frac{1}{f^{\prime}\left(x_{0}\right)}
$$

Practice Problems - Exam \#2

(1) If $f(x)=2 x^{2}+4$, which of the following is $f^{\prime}(3)$?
A. $\lim _{h \rightarrow 0} \frac{2(3+h)^{2}-10}{h}$
B. $\lim _{x \rightarrow 3} \frac{2 x^{2}-18}{x-3}$
C. $\lim _{h \rightarrow 0} \frac{2(3+h)^{2}+18}{h}$
D. $\lim _{x \rightarrow 3} \frac{2 x^{2}+18 x}{x-3}$
E. $\lim _{h \rightarrow 0} \frac{2 h^{2}-18}{h-3}$
(2) Find all values of x for which the graph of $f(x)=\frac{2 x-1}{x+1}$ has a tangent line parallel to the line $y=3 x+1$
A. -2 and 0
B. 3 and 0
C. 0 and 2
D. -3 and 1
E. -3 and 0
(3) A particle is moving on a straight line so that its displacement from the origin is given by $s(t)=$ $t^{3}-6 t^{2}+12 t-8$. During which of the following time intervals is the particle speeding up?
A. $(2, \infty)$ only
B. $(0,3)$ only
C. $(0, \infty)$ only
D. $(0,1) \cup(2, \infty)$
E. $(0,2)$ only
(4) Which of these statements are TRUE?
(i) If $f(x)=|x|$, then $f^{\prime}(0)$ DNE
(ii) If $g(x)=\frac{|x|}{x}$, then $g^{\prime}(0)$ DNE
(iii) If $h(x)=x|x|$, then $h^{\prime}(0)=0$
A. Only (i) and (ii)
B. Only (i)
C. Only (i) and (iii)
D. None are True
E. All are True
(5) If the normal line to the graph of $y=f(x)$ at $(2,6)$ is $y=\frac{2}{3} x-4$, what is $f^{\prime}(2)$?
A. $\frac{3}{2}$
B. $\frac{2}{3}$
C. $-\frac{3}{2}$
D. 2 E. Cannot be determined
(6) Given the graph of $y=f(x)$ as shown here:

then which graph below looks most like the graph of the derivative $f^{\prime}(x)$?

(7) The tangent line to $y=(2+\sqrt{x})^{2}$ at $x=1$ intersects the y axis where?
A. $(0,6)$
B. $(0,4)$
C. $(0,2)$
D. $(0,1)$
E. $(0,3)$
(8) $\lim _{x \rightarrow 0} \frac{\tan \pi x}{x \sec x}=$
A. $\frac{1}{\pi}$
B. 0
C. 1
D. π
E. DNE
(9) Find the derivative of $f(x)=\frac{1}{\sqrt[3]{1-x^{2}}}$
A. $\frac{2 x}{3\left(1-x^{2}\right)^{\frac{1}{3}}}$
B. $\frac{-2 x}{3\left(1-x^{2}\right)^{\frac{4}{3}}}$
C. $\frac{-2 x}{3\left(1-x^{2}\right)^{\frac{1}{3}}}$
D. $\frac{2 x}{3\left(1-x^{2}\right)^{\frac{2}{3}}}$
E. $\frac{2 x}{3\left(1-x^{2}\right)^{\frac{4}{3}}}$
(10) If $y=\sqrt{x+\sqrt{x}}$, then $y^{\prime}=$
A. $\frac{1+\sqrt{x}}{2 \sqrt{x+\sqrt{x}}}$
B. $\frac{1+\sqrt{x}}{4 \sqrt{x+\sqrt{x}}}$
C. $\frac{1+2 \sqrt{x}}{2 \sqrt{x+\sqrt{x}}}$
D. $\frac{1+2 \sqrt{x}}{2 \sqrt{x} \sqrt{x+\sqrt{x}}}$
E. $\frac{1+2 \sqrt{x}}{4 \sqrt{x} \sqrt{x+\sqrt{x}}}$

(11) Given the following data | $f(0)=-3$ | $f(1)=4$ |
| :---: | :---: |
| $f^{\prime}(0)=2$ | $f^{\prime}(1)=3$ |
| $g(0)=1$ | $g(1)=0$ |
| $g^{\prime}(0)=-1$ | $g^{\prime}(1)=-2$ | if $h(x)=\frac{f(g(x))}{g(x)}$, find $h^{\prime}(0)$.

A. 7
B. 2
C. 4
D. 3
E. 1
(12) $\frac{d^{2}}{d x^{2}}(x \sin x)=$
A. $2 \cos x-x \sin x$
B. $x \cos x+\sin x$
C. $x \cos x-\sin x$
D. $x \sin x+\cos x$
E. $x \cos x-2 \sin x$
(13) Compute $\lim _{x \rightarrow 0} \frac{\sin x \cos x-\sin x+x \sin x}{x^{2}}$
A. $\frac{1}{2}$
B. DNE
C. 0
D. 2
E. 1
(14) $\frac{d}{d x}\left(\sin ^{3}(x)-\cos \left(x^{3}\right)\right)=$
A. $3 \sin ^{2}(x) \cos (x)-3 x^{2} \sin \left(x^{3}\right)$
B. $3 \sin ^{2}(x) \cos (x)+3 x^{2} \sin \left(x^{3}\right) \cos \left(x^{3}\right)$
C. $3 \sin ^{2}(x) \cos (x)-3 x^{2} \sin \left(x^{3}\right) \cos \left(x^{3}\right)$
D. $3 \sin ^{2}(x) \cos (x)+3 x^{2} \cos \left(x^{3}\right)$
E. $3 \sin ^{2}(x) \cos (x)+3 x^{2} \sin \left(x^{3}\right)$
(15) Use Implicit Differentiation to find y^{\prime} if $x^{2}+5 x y-6 y^{4}=18$
A. $\frac{2 x+5 y}{24 y^{3}-5 x}$
B. $\frac{2 x+5 y}{24 y^{3}}$
C. $\frac{2 x}{24 y^{3}-5 x}$
D. $\frac{2 x+5 y-18}{24 y^{3}}$
E. $\frac{2 x+5 y-18}{24 y^{3}-5 x}$
(16) Use Logarithmic Differentiation to find the derivative of $f(x)=x^{\sin x}$
A. $(\sin x) x^{\sin x-1}$
B. $x^{\sin x}(\cos x)(\ln x)$
C. $\frac{\sin x}{x}+(\cos x)(\ln x)$
D. $x^{\sin x}\left[\frac{\sin x}{x}+(\cos x)(\ln x)\right]$
E. $x \cos x+\sin x$
(17) If $f(x)=x^{\ln x}$, find $f^{\prime}(e)$.
A. 0
B. 1
C. 2
D. 3
E. 4
(18) If $y=x^{2}+2^{x}$, then $\frac{d y}{d x}=$
A. $2 x+x 2^{x-1}$
B. $2 x+2^{x}$
C. $2 x+2^{x} \ln 2$
D. $\left(2 x+2^{x}\right) \ln 2$
E. $2 x+\frac{2^{x}}{\ln 2}$
(19) Find $f^{\prime}(1)$ if $f(x)=\ln \left[\frac{(3 x-1)^{2}}{(x+1)^{4}}\right]$
A. 1
B. -1
C. 2
D. -2
E. 5
(20) If $f(x)=\tan ^{-1}\left(\frac{2}{x^{2}}\right), f^{\prime}(-1)=$
A. 1
B. $\frac{4}{5}$
C. $-\frac{2}{5}$
D. $\frac{2}{5}$
E. $-\frac{4}{5}$
(21) If $y=\arcsin (x)-\sqrt{1-x^{2}}, \frac{d y}{d x}=$
A. $\frac{1}{2 \sqrt{1-x^{2}}}$
B. $\frac{1+x}{\sqrt{1-x^{2}}}$
C. $\frac{2}{\sqrt{1-x^{2}}}$
D. $\frac{x^{2}}{\sqrt{1-x^{2}}}$
E. $\frac{1}{\sqrt{1+x}}$
(22) Compute $y^{\prime \prime}$ if $x^{2}+y^{2}=2 y+5$.
A. $\frac{d^{2} y}{d x^{2}}=\frac{1}{1-y}+\frac{x^{2}}{(1-y)^{2}}$
B. $\frac{d^{2} y}{d x^{2}}=\frac{1}{1-y}+\frac{x^{2}}{(1-y)^{3}}$
C. $\frac{d^{2} y}{d x^{2}}=\frac{1+x^{2}}{(1-y)^{2}}$
D. $\frac{d^{2} y}{d x^{2}}=\frac{1+x^{2}}{(1-y)^{3}}$
E. $\frac{d^{2} y}{d x^{2}}=\frac{x^{2}}{1-y}-\frac{1}{(1-y)^{3}}$
(23) If $y=y(x)$ is defined implicitly by the equation $y e^{y^{2}}=10 x$, then $\frac{d y}{d x}=$
A. $y+2 y e^{y^{2}}$
B. $2 y^{2} e^{y^{2}}+e^{y^{2}}$
C. $\frac{y}{x\left(2 y^{2}+1\right)}$
D. $\frac{y}{\left(2 y^{2}+1\right)}$
E. $\frac{y}{10\left(2 y^{2}+1\right)}$
(24) If $f(x)=x^{3}+x+1$, compute $\left(f^{-1}\right)^{\prime}(3)$.
A. 1
B. $\frac{1}{2}$
C. $\frac{1}{3}$
D. $\frac{1}{4}$
E. $\frac{1}{28}$

Answers

1. B
2. A
3. A
4. E
5. C
6. E
7. A
8. D
9. E
10. E
11. E
12. A
13. E
14. E
15. A
16. D
17. C
18. C
19. A
20. B
21. B
22. B
23. C
24. D
