Study Guide - Exam # 2

I Derivatives

(1) Given y = f(x) and an interval [a, b], then the *change* in x is $\Delta x = b - a$ and the corresponding *change* in f (or change in f) is $\Delta y = f(b) - f(a)$ and

$$\frac{\Delta y}{\Delta x} = \frac{f(b) - f(a)}{b - a} = \begin{cases} \text{slope of secant line through } (a, f(a)), \ (b, f(b)) \\ \text{average velocity over the interval } [a, b] \\ \text{average rate of change of } f(x) \text{ over the interval } [a, b] \end{cases}$$

(2) Definition of **derivative** of y = f(x) at the point x = a:

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$
 or equivalently $f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$

(3) Interpretation of derivative:

$$f'(a) = \begin{cases} \text{slope of tangent line to the graph of } y = f(x) \text{ at } a \\ \text{velocity at time } a \\ \text{(instantaneous) rate of change of } f(x) \text{ at } a \end{cases}$$

(3) Tangent line and Normal line to graph of y = f(x):

Point-Slope Formula for the line through (x_0, y_0) with slope m: $y - y_0 = m(x - x_0)$

Recall, if m = slope of tangent line, then $-\frac{1}{m} = \text{slope}$ of normal line.

(4) Derivative as a function: $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$; differentiable functions (i.e., f'(x) exists); f differentiable at $x \implies f$ continuous at x; know the conditions when f is not differentiable at x = a

Higher order derivatives: y'' or equivalently $\frac{d^2y}{dx^2}$; y''' or equivalently $\frac{d^3y}{dx^3}$; etc...

When s(t) is the position of an object $\implies v = s'(t)$, a = s''(t) and speed = |s'(t)|.

 $oxed{II}$ Basic Differentiation Rules: If f and g are differentiable functions, and c is a constant:

(1)
$$\frac{d\{c\}}{dx} = 0;$$
 $\frac{d\{cf(x)\}}{dx} = cf'(x);$ $\frac{d\{f(x) + g(x)\}}{dx} = f'(x) + g'(x);$ $\frac{d\{f(x) - g(x)\}}{dx} = f'(x) - g'(x)$

- (2) Power Rule: $\frac{d(x^n)}{dx} = nx^{n-1}$, where n is any real number
- (3) Product Rule: $\{f(x)g(x)\}' = f(x)g'(x) + g(x)f'(x)$
- (4) Quotient Rule: $\left\{\frac{f(x)}{g(x)}\right\}' = \frac{g(x)f'(x) f(x)g'(x)}{(g(x))^2}$, provided $g(x) \neq 0$

III Derivatives of Trig Functions

- (1) If x is in radians, then $\lim_{x \to 0} \frac{\sin x}{x} = 1$ $\lim_{x \to 0} \frac{x}{\sin x} = 1$ $\lim_{x \to 0} \frac{\cos x 1}{x} = 0$. (Note that $\sin kx \neq k \sin x$)
- (2) If x is in radians, then

$\frac{d}{dx}\big\{\sin x\big\} = \cos x$	$\frac{d}{dx}\big\{\cos x\big\} = -\sin x$
$\frac{d}{dx}\{\tan x\} = \sec^2 x$	$\frac{d}{dx}\big\{\cot x\big\} = -\csc^2 x$
$\frac{d}{dx} \big\{ \sec x \big\} = \sec x \tan x$	$\frac{d}{dx}\big\{\csc x\big\} = -\csc x \cot x$

IV CHAIN RULE: If g is differentiable at x and f is differentiable at g(x), then the composite function $f \circ g$ is differentiable at x and its derivative is

$$(f \circ g)'(x) = \frac{d}{dx} \left\{ f(g(x)) \right\} = f'(g(x)) g'(x)$$

or, equivalently, if y = f(u) and u = g(x), then $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$

 \mathbf{V}

<u>Implicit Differentiation Method</u>: If y = y(x) is a function of x defined implicitly by the equation F(x, y) = 0 then

Step 1: Differentiate both sides of F(x,y) = 0 w.r.t. the independent variable x

Step 2: Solve for the desired derivative $\frac{dy}{dx}$.

Remarks:

- Since y = y(x) is a function of x, then by the Chain Rule $\frac{d}{dx} \{y^n\} = ny^{n-1} \frac{dy}{dx}$.
- After using Implicit Differentiation, the derivative $\frac{dy}{dx}$ usually involves both x and y.

$\overline{ extbf{VI}}$

More Differentiation Rules:

(1)
$$\frac{d(e^x)}{dx} = e^x \qquad \frac{d(b^x)}{dx} = b^x \ln b$$

(2) Derivative of Natural Logarithm

$$\frac{d}{dx}\Big(\ln x\Big) = \frac{1}{x}, \quad \text{if } x > 0$$

$$\frac{d}{dx}\left(\ln|x|\right) = \frac{1}{x}$$
, if $x \neq 0$

$$\frac{d}{dx}\left(\ln|u(x)|\right) = \frac{u'(x)}{u(x)}, \text{ if } u(x) \neq 0$$

(3) Law of Logarithms: (Reminder)

•
$$\log_b(xy) = \log_b x + \log_b y$$

•
$$\log_b \left(\frac{x}{y}\right) = \log_b x - \log_b y$$

•
$$\log_b(x^p) = p \log_b x$$

(4) Logarithmic Differentiation Method

Step 1: Take natural log of both sides of the equation and simplify using Law of Logarithms

Step 2: Differentiate both sides implicitly, w.r.t x

Step 3: Solve the resulting equation for $\frac{dy}{dx}$

Derivatives of Inverse Trig Functions

Note, for example, $\sin^{-1} x$ is same as $\arcsin x$, but $\sin^{-1} x \neq (\sin x)^{-1}$

(1) Common Basic Derivatives:

$\frac{d(\sin^{-1}x)}{dx} = \frac{1}{\sqrt{1-x^2}}$	$\frac{d(\cos^{-1} x)}{dx} = -\frac{1}{\sqrt{1-x^2}}, \text{for } -1 < x < 1$
$\frac{d(\tan^{-1}x)}{dx} = \frac{1}{1+x^2}$	$\frac{d(\cot^{-1}x)}{dx} = -\frac{1}{1+x^2}, \text{for } -\infty < x < \infty$
$\frac{d(\sec^{-1} x)}{dx} = \frac{1}{ x \sqrt{x^2 - 1}}$	$\frac{d(\csc^{-1} x)}{dx} = -\frac{1}{ x \sqrt{x^2 - 1}}, \text{for } x > 1$

- (2) If u is a differentiable function of x, then by the Chain Rule, $\frac{d(\sin^{-1} u)}{dx} = \frac{1}{\sqrt{1-u^2}} \frac{du}{dx}$, etc.
- Theorem (Derivative of the Inverse Function) If f is differentiable and has an inverse on an interval I, x_0 is a point in I and $f'(x_0) \neq 0$, then the inverse function f^{-1} is differentiable at the point $f(x_0)$ and

$$(f^{-1})'(f(x_0)) = \frac{1}{f'(x_0)}$$

Practice Problems - Exam #2

- (1) If $f(x) = 2x^2 + 4$, which of the following is f'(3)?
- **A.** $\lim_{h\to 0} \frac{2(3+h)^2-10}{h}$ **B.** $\lim_{x\to 3} \frac{2x^2-18}{x-3}$ **C.** $\lim_{h\to 0} \frac{2(3+h)^2+18}{h}$ **D.** $\lim_{x\to 3} \frac{2x^2+18x}{x-3}$

- **E.** $\lim_{h\to 0} \frac{2h^2-18}{h-3}$
- (2) Find all values of x for which the graph of $f(x) = \frac{2x-1}{x+1}$ has a tangent line parallel to the line y = 3x + 1
 - **C.** 0 and 2 **D.** -3 and 1 **E.** -3 and 0 **A.** -2 and 0 **B.** 3 and 0
- (3) A particle is moving on a straight line so that its displacement from the origin is given by s(t) = $t^3 - 6t^2 + 12t - 8$. During which of the following time intervals is the particle speeding up?

- **A.** $(2, \infty)$ only **B.** (0, 3) only **C.** $(0, \infty)$ only **D.** $(0, 1) \cup (2, \infty)$ **E.** (0, 2) only

- (4) Which of these statements are TRUE?
 - (i) If f(x) = |x|, then f'(0) **DNE**
 - (ii) If $g(x) = \frac{|x|}{x}$, then g'(0) **DNE**
 - (iii) If h(x) = x|x|, then h'(0) = 0
 - A. Only (i) and (ii) B. Only (i) C. Only (i) and (iii) D. None are True
 - E. All are True
- (5) If the normal line to the graph of y = f(x) at (2,6) is $y = \frac{2}{3}x 4$, what is f'(2)?

 A. $\frac{3}{2}$ B. $\frac{2}{3}$ C. $-\frac{3}{2}$ D. 2 E. Cannot be determined
- (6) Given the graph of y = f(x) as shown here:

then which graph below looks most like the graph of the derivative f'(x)?

- (7) The tangent line to $y = (2 + \sqrt{x})^2$ at x = 1 intersects the y axis where?
 - **A.** (0,6)
- **B.** (0,4) **C.** (0,2) **D.** (0,1)
- **E.** (0,3)

(8)
$$\lim_{x\to 0} \frac{\tan \pi x}{x \sec x} =$$

A.
$$\frac{1}{\pi}$$
 B. 0 **C.** 1 **D.** π **E. DNE**

(9) Find the derivative of
$$f(x) = \frac{1}{\sqrt[3]{1-x^2}}$$

A.
$$\frac{2x}{3(1-x^2)^{\frac{1}{3}}}$$
 B. $\frac{-2x}{3(1-x^2)^{\frac{4}{3}}}$ C. $\frac{-2x}{3(1-x^2)^{\frac{1}{3}}}$ D. $\frac{2x}{3(1-x^2)^{\frac{2}{3}}}$ E. $\frac{2x}{3(1-x^2)^{\frac{4}{3}}}$

(10) If
$$y = \sqrt{x + \sqrt{x}}$$
, then $y' =$

A.
$$\frac{1+\sqrt{x}}{2\sqrt{x+\sqrt{x}}}$$
 B. $\frac{1+\sqrt{x}}{4\sqrt{x+\sqrt{x}}}$ C. $\frac{1+2\sqrt{x}}{2\sqrt{x+\sqrt{x}}}$ D. $\frac{1+2\sqrt{x}}{2\sqrt{x}\sqrt{x+\sqrt{x}}}$ E. $\frac{1+2\sqrt{x}}{4\sqrt{x}\sqrt{x+\sqrt{x}}}$

$$(12) \ \frac{d^2}{dx^2} \big(x \sin x \big) =$$

A. $2\cos x - x\sin x$ **B.** $x\cos x + \sin x$ **C.** $x\cos x - \sin x$ **D.** $x\sin x + \cos x$ **E.** $x\cos x - 2\sin x$

(13) Compute
$$\lim_{x\to 0} \frac{\sin x \cos x - \sin x + x \sin x}{x^2}$$

A.
$$\frac{1}{2}$$
 B. DNE C. 0 **D.** 2 **E.** 1

$$(14) \frac{d}{dx} \left(\sin^3(x) - \cos(x^3) \right) =$$

A.
$$3\sin^2(x)\cos(x) - 3x^2\sin(x^3)$$
 B. $3\sin^2(x)\cos(x) + 3x^2\sin(x^3)\cos(x^3)$

C.
$$3\sin^2(x)\cos(x) - 3x^2\sin(x^3)\cos(x^3)$$
 D. $3\sin^2(x)\cos(x) + 3x^2\cos(x^3)$

E.
$$3\sin^2(x)\cos(x) + 3x^2\sin(x^3)$$

(15) Use Implicit Differentiation to find
$$y'$$
 if $x^2 + 5xy - 6y^4 = 18$

A.
$$\frac{2x+5y}{24y^3-5x}$$
 B. $\frac{2x+5y}{24y^3}$ **C.** $\frac{2x}{24y^3-5x}$ **D.** $\frac{2x+5y-18}{24y^3}$ **E.** $\frac{2x+5y-18}{24y^3-5x}$

(16) Use Logarithmic Differentiation to find the derivative of
$$f(x) = x^{\sin x}$$

A.
$$(\sin x) x^{\sin x - 1}$$
 B. $x^{\sin x} (\cos x) (\ln x)$ **C.** $\frac{\sin x}{x} + (\cos x) (\ln x)$ **D.** $x^{\sin x} \left[\frac{\sin x}{x} + (\cos x) (\ln x) \right]$ **E.** $x \cos x + \sin x$

(17) If
$$f(x) = x^{\ln x}$$
, find $f'(e)$.

(18) If $y = x^2 + 2^x$, then $\frac{dy}{dx} =$

A. $2x + x2^{x-1}$ **B.** $2x + 2^x$ **C.** $2x + 2^x \ln 2$ **D.** $(2x + 2^x) \ln 2$ **E.** $2x + \frac{2^x}{\ln 2}$

(19) Find f'(1) if $f(x) = \ln \left[\frac{(3x-1)^2}{(x+1)^4} \right]$

A. 1 **B.** -1 **C.** 2 **D.** -2 **E.** 5

(20) If $f(x) = \tan^{-1}\left(\frac{2}{x^2}\right)$, f'(-1) =

A. 1 **B.** $\frac{4}{5}$ **C.** $-\frac{2}{5}$ **D.** $\frac{2}{5}$ **E.** $-\frac{4}{5}$

(21) If $y = \arcsin(x) - \sqrt{1 - x^2}$, $\frac{dy}{dx} = \frac{1}{2}$

A. $\frac{1}{2\sqrt{1-x^2}}$ B. $\frac{1+x}{\sqrt{1-x^2}}$ C. $\frac{2}{\sqrt{1-x^2}}$ D. $\frac{x^2}{\sqrt{1-x^2}}$ E. $\frac{1}{\sqrt{1+x}}$

(22) Compute y'' if $x^2 + y^2 = 2y + 5$.

A. $\frac{d^2y}{dx^2} = \frac{1}{1-y} + \frac{x^2}{(1-y)^2}$ **B.** $\frac{d^2y}{dx^2} = \frac{1}{1-y} + \frac{x^2}{(1-y)^3}$ **C.** $\frac{d^2y}{dx^2} = \frac{1+x^2}{(1-y)^2}$

D. $\frac{d^2y}{dx^2} = \frac{1+x^2}{(1-y)^3}$ **E.** $\frac{d^2y}{dx^2} = \frac{x^2}{1-y} - \frac{1}{(1-y)^3}$

(23) If y = y(x) is defined implicitly by the equation $y e^{y^2} = 10x$, then $\frac{dy}{dx} = \frac{dy}{dx}$

A. $y + 2ye^{y^2}$ **B.** $2y^2e^{y^2} + e^{y^2}$ **C.** $\frac{y}{x(2y^2+1)}$ **D.** $\frac{y}{(2y^2+1)}$ **E.** $\frac{y}{10(2y^2+1)}$

(24) If $f(x) = x^3 + x + 1$, compute $(f^{-1})'(3)$.

A. 1 **B.** $\frac{1}{2}$ **C.** $\frac{1}{3}$ **D.** $\frac{1}{4}$ **E.** $\frac{1}{28}$

Answers

1. B 2. A 3. A 4. E 5. C 6. E 7. A 8. D 9. E

10. E 11. E 12. A 13. E 14. E 15. A 16. D 17. C

18. C **19.** A **20.** B **21.** B **22.** B **23.** C **24.** D