
Some Applications of Linear Systems

I Network Flow: Suppose cars enter and leave intersections at certain rates per hour. For example
55 cars per hour leave the intersection D (see below). Find x1, x2, x3, assuming that the net flow of
cars into an intersection is equal to the net flow of cars out of the intersection:
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Intersection A : 30 = x2 + x1

Intersection B : x2 + x3 = 35
Intersection C : 60 = x3 + 15
Intersection D : x1 + 15 = 55

=⇒


x1 + x2 = 30
x2 + x3 = 35

x3 = 45
x1 = 40

=⇒
[
A
∣∣∣b

]
=


1 1 0 30
0 1 1 35
0 0 1 45
1 0 0 40

 ∼


1 0 0 40
0 1 0 −10
0 0 1 45
0 0 0 0



Thus
x1 = 40
x2 = −10 (this means direction in figure should be in opposite direction in the figure above)
x3 = 45



II Polynomial Interpolation: Given n + 1 fixed points (x1, y1), (x2, y2), · · · , (xn+1, yn+1) in R2

that have distinct x coordinates, then there exists a unique polynomial of degree n of the form

y = p(x) = a0 + a1x+ · · ·+ anx
n

such that p(x1) = y1, p(x2) = y2, · · · p(xn+1) = yn+1:

y

y=p(x)

x

Thus we obtain the linear system in the unknowns variables a0, a1, · · · , an+1:
a0 + a1x1 + a2x

2
1 + · · ·+ anx

n
1 = y1

a0 + a1x2 + a2x
2
2 + · · ·+ anx

n
2 = y2

... ...
a0 + a1xn+1 + a2x

2
n+1 + · · ·+ anx

n
n+1 = yn+1

=⇒
[
A
∣∣∣b

]
=


1 x1 x2

1 · · · · · · xn
1 y1

1 x2 x2
2 · · · · · · xn

2 y2
... ... ... ...
1 xn+1 x2

n+1 · · · · · · xn
n+1 yn+1



For example, find the (unique) quadratic polynomial that passes through the 3 points (−1, 7), (1, 5), (2, 10).

Solution: Let (x1, y1) = (−1, 7), (x2, y2) = (1, 5), (x3, y3) = (2, 10) and y = p(x) = a0 + a1x+ a2x
2.

Since p(x1) = y1, p(x2) = y2, p(x3) = y3 we get the linear system

 1 −1 1
1 1 1
1 2 4

  a0
a1
a2

 =

 7
5
10

.
Use GEM or GJEM to solve the system to obtain a0 = 4, a1 = −1, a2 = 2. Hence the unique
polynomial of degree 2 is y = p(x) = 4− x+ 2x2.



III Computing Planetary Orbits: Kepler’s 1st Law of Planetary Motion says that a planet
travels around the sun in an elliptical orbit in a plane with the sun at one focus of the ellipse.
Hence the orbit of a planet can be described by the general formula for a conic section in the plane:

x2 + axy + by2 + cx+ dy + e = 0

If a planet’s position is known at just five (5) different points (x1, y1), (x2, y2), · · · , (x5, y5), then
we can determine the equation of the planet’s orbit by solving for the unknowns a, b, c, d, e :

x2
1 + ax1y1 + by21 + cx1 + dy1 + e = 0

x2
2 + ax2y2 + by22 + cx2 + dy2 + e = 0

x2
3 + ax3y3 + by23 + cx3 + dy3 + e = 0

x2
4 + ax4y4 + by24 + cx4 + dy4 + e = 0

x2
5 + ax5y5 + by25 + cx5 + dy5 + e = 0

.

Or, equivalently:


ax1y1 + by21 + cx1 + dy1 + e = −x2

1

ax2y2 + by22 + cx2 + dy2 + e = −x2
2

ax3y3 + by23 + cx3 + dy3 + e = −x2
3

ax4y4 + by24 + cx4 + dy4 + e = −x2
4

ax5y5 + by25 + cx5 + dy5 + e = −x2
5

. The corresponding augmented matrix

of this linear system in the unknowns a, b, c, d, e is
[
A
∣∣∣b

]
=


x1y1 y21 x1 y1 1 −x2

1

x2y2 y22 x2 y2 1 −x2
2

x3y3 y23 x3 y3 1 −x2
3

x4y4 y24 x4 y4 1 −x2
4

x5y5 y25 x5 y5 1 −x2
5

.
Solve this system using GEM or GJEM to determine the unknowns a, b, c, d, e.



IV Temperature Distribution: Let D be a rectangular lamina in R2 (a thin plate) that is
insulated so that heat flow can only occur across its 4 sides and its 4 corners are insulated. Suppose
that the sides are kept at fixed temperatures as shown below. We want to estimate the temperature
at interior points. One method is to partition D into small rectangular regions as shown below and
assume that the temperature at a node is the average of its temperatures at its 4 nearest node (this
is simplistic, but this is just to show the method). Find the temperature at the nodes shown below:
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=⇒


T1 =

100 + 60 + 0 + T2

4

T2 =
100 + T1 + 0 + 20

4

=⇒


4T1 − T2 = 160

−T1 + 4T2 = 120
=⇒ T1 =

152

3
≈ 50.67◦, T2 =

128

3
≈ 42.67◦



V Difference Equations: The famous Fibonacci sequence

0, 1, 1, 2, 3, 5, 8, 13, · · ·

is defined by the difference equation Fk+1 = Fk + Fk−1 (*)

where F1 = 0 and F2 = 1 and k = 2, 3, · · · . Thus F3 = 1, F4 = 2, F5 = 3, F6 = 5, F7 = 8, · · · .
This sequence occurs in many places, even in nature - flowers, trees, honey bees, genetics, etc. This

sequence is also associated with the Golden Ratio φ =
1 +

√
5

2
. There are entire books written

on the Fibonacci sequence and also on the Golden Ratio.

Question: How can we find the nth Fibonacci number Fn when n is large?

Solution: Let uk =

[
Fk+1

Fk

]
and note that the single equation (*) is equivalent to the system{

Fk+1 = Fk + Fk−1

Fk = Fk

In matrix form, this system is uk =

[
Fk+1

Fk

]
=

[
1 1
1 0

] [
Fk

Fk−1

]
= Auk−1, where A =

[
1 1
1 0

]
.

Hence for k = 2, 3, 4 · · · we get
uk = Auk−1 (∗)

Since u2 = Au1, where u1 =

[
F2

F1

]
=

[
1
0

]
, we can now iterate (∗) as follows:

u3 = Au2 = A(Au1) = A2u1

u4 = Au3 = A(A2u1) = A3u1
...

We end up with a formula

uk =

[
Fk+1

Fk

]
= Ak−1 u1 (∗∗)

and we can obtain any Fibonacci number Fk we wish simply by multiplying a power of A and the
fixed column vector u1.

For example, suppose we needed the 11th Fibonacci number F11. Let k = 10 we can compute
A9 =

[
55 34
34 21

]
and we see that (∗∗) becomes

u10 =

[
F11

F10

]
= A9u1 =

[
55 34
34 21

] [
1
0

]
=

[
55
34

]
, hence F11 = 55 and F10 = 34 (for free!).

NOTE: An easy method for computing Ak will be given later.



VI Partial Fractions: Find a Partial Fraction Decomposition for 3x3 + 3x2 + 3x− 1

x2(x2 + 1)
.

Solution:

3x3 + 3x2 + 3x− 1

x2(x2 + 1)
=

A

x
+

B

x2
+

Cx+D

x2 + 1

=
Ax(x2 + 1) +B(x2 + 1) + x2(Cx+D)

x2(x2 + 1)

=⇒ Ax(x2 + 1) +B(x2 + 1) + x2(Cx+D) = 3x3 + 3x2 + 3x− 1

=⇒ x3(A+ C) + x2(B +D) + x(A) + (B) = 3x3 + 3x2 + 3x− 1

=⇒


A+ C = 3
B +D = 3

A = 3
B = −1

=⇒


1 0 1 0
0 1 0 1
1 0 0 0
0 1 0 0




A
B
C
D

 =


3
3
3

−1


Thus the augmented matrix becomes
1 0 1 0 3
0 1 0 1 3
1 0 0 0 3
0 1 0 0 −1

 ∼ · · · · · · ∼


1 0 0 0 3

0 1 0 0 −1

0 0 1 0 0

0 0 0 1 4

 =⇒ A = 3, B = −1, C = 0, D = 4

Hence

3x3 + 3x2 + 3x− 1

x2(x2 + 1)
=

3

x
− 1

x2
+

4

x2 + 1



VII Leontief Model - Nobel Prize: Our economy has 3 industries: coal, electricity, and auto.
To produce $1 of each we get the data:

Requires −→ Coal Elect Auto
s1 = Coal Industry $0.10 $0.25 $0.20
s2 = Electricity Industry $0.30 $0.40 $0.50
s3 = Auto Industry $0.10 $0.15 $0.10

Suppose one week demand is $50 K for Coal; $75 K for Elect; $125 K for Auto.

Thus D =

 50, 000
75, 000
125, 000

. Find production levels to meet internal and external demands for each of

the three industries.

Solution: Define aij and pj as:
aij = # units (dollars) produced by Industry si to produce 1 unit ($1) of Industry sj

pj = production level of Industry sj

=⇒ aij pj = # units (dollars) produced by si and consumed by sj

Hence total number of units (dollars) produced by si is

ai1p1 + ai2p2 + ai3p3 (internal demand)

Now pi+di is the external demand for Industry si. Hence in order to meet internal and external
demands for Industry si, we need ai1p1 + ai2p2 + ai3p3 = pi + di. Thus for all three industries we
get the linear system: 

a11p1 + a12p2 + a13p3 = p1 + d1
a21p1 + a22p2 + a23p3 = p2 + d2
a31p1 + a32p2 + a33p3 = p3 + d3

Thus, AP = P +D where A =
[
aij

]
=

 0.10 0.25 0.20
0.30 0.40 0.50
0.10 0.15 0.10

, D =

 50, 000
75, 000
125, 000

, P =

 p1
p2
p3

.
Solving for P :

AP = P +D
AP − P = D

AP − IP = D
(A− I)P = D

(A− I)−1 (A− I)P = (A− I)−1D
P = (A− I)−1D

Applying this to our 3 industry economy, we get

P =

 p1
p2
p3

 =

 $229, 921.59
$437, 795.27
$237, 401.57




