Some Applications of Linear Systems

I Network Flow: Suppose cars enter and leave intersections at certain rates per hour. For example 55 cars per hour leave the intersection D (see below). Find x_{1}, x_{2}, x_{3}, assuming that the net flow of cars into an intersection is equal to the net flow of cars out of the intersection:

Intersection A: $30=x_{2}+x_{1}$
Intersection B: $\quad x_{2}+x_{3}=35$
Intersection C: $60=x_{3}+15$
Intersection D: $\quad x_{1}+15=55$

$$
\Longrightarrow\left\{\begin{array}{r}
x_{1}+x_{2}=30 \\
x_{2}+x_{3}=35 \\
x_{3}=45 \\
x_{1}=40
\end{array} \quad \Longrightarrow[A \mid \mathbf{b}]=\left[\begin{array}{lll|l}
1 & 1 & 0 & 30 \\
0 & 1 & 1 & 35 \\
0 & 0 & 1 & 45 \\
1 & 0 & 0 & 40
\end{array}\right] \sim\left[\begin{array}{rrr|r}
1 & 0 & 0 & 40 \\
0 & 1 & 0 & -10 \\
0 & 0 & 1 & 45 \\
0 & 0 & 0 & 0
\end{array}\right]\right.
$$

$$
x_{1}=40
$$

Thus $\quad x_{2}=-10$ (this means direction in figure should be in opposite direction in the figure above) $x_{3}=45$

II Polynomial Interpolation: Given $n+1$ fixed points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \cdots,\left(x_{n+1}, y_{n+1}\right)$ in \mathbb{R}^{2} that have distinct x coordinates, then there exists a unique polynomial of degree n of the form

$$
y=p(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}
$$

such that $p\left(x_{1}\right)=y_{1}, p\left(x_{2}\right)=y_{2}, \cdots p\left(x_{n+1}\right)=y_{n+1}$:

Thus we obtain the linear system in the unknowns variables $a_{0}, a_{1}, \cdots, a_{n+1}$:

$$
\left\{\begin{array}{cl}
a_{0}+a_{1} x_{1}+a_{2} x_{1}^{2}+\cdots+a_{n} x_{1}^{n} & =y_{1} \\
a_{0}+a_{1} x_{2}+a_{2} x_{2}^{2}+\cdots+a_{n} x_{2}^{n} & =y_{2} \\
\vdots & \vdots \\
a_{0}+a_{1} x_{n+1}+a_{2} x_{n+1}^{2}+\cdots+a_{n} x_{n+1}^{n} & =y_{n+1}
\end{array} \quad \Longrightarrow[A \mid \mathbf{b}]=\left[\begin{array}{rrrrr|c}
1 & x_{1} & x_{1}^{2} & \cdots \cdots & x_{1}^{n} & y_{1} \\
1 & x_{2} & x_{2}^{2} & \cdots \cdots & x_{2}^{n} & y_{2} \\
\vdots & \vdots & & & \vdots & \\
1 & x_{n+1} & x_{n+1}^{2} & \cdots \cdots & x_{n+1}^{n} & y_{n+1}
\end{array}\right]\right.
$$

For example, find the (unique) quadratic polynomial that passes through the 3 points $(-1,7),(1,5),(2,10)$.
Solution: Let $\left(x_{1}, y_{1}\right)=(-1,7),\left(x_{2}, y_{2}\right)=(1,5),\left(x_{3}, y_{3}\right)=(2,10)$ and $y=p(x)=a_{0}+a_{1} x+a_{2} x^{2}$. Since $p\left(x_{1}\right)=y_{1}, p\left(x_{2}\right)=y_{2}, p\left(x_{3}\right)=y_{3}$ we get the linear system $\left[\begin{array}{rrr}1 & -1 & 1 \\ 1 & 1 & 1 \\ 1 & 2 & 4\end{array}\right]\left[\begin{array}{c}a_{0} \\ a_{1} \\ a_{2}\end{array}\right]=\left[\begin{array}{c}7 \\ 5 \\ 10\end{array}\right]$.

Use GEM or GJEM to solve the system to obtain $a_{0}=4, a_{1}=-1, a_{2}=2$. Hence the unique polynomial of degree 2 is $y=p(x)=4-x+2 x^{2}$.

III Computing Planetary Orbits: Kepler's $1^{\text {st }}$ Law of Planetary Motion says that a planet travels around the sun in an elliptical orbit in a plane with the sun at one focus of the ellipse. Hence the orbit of a planet can be described by the general formula for a conic section in the plane:

$$
x^{2}+a x y+b y^{2}+c x+d y+e=0
$$

If a planet's position is known at just five (5) different points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \cdots,\left(x_{5}, y_{5}\right)$, then we can determine the equation of the planet's orbit by solving for the unknowns a, b, c, d, e :

$$
\left\{\begin{array}{l}
x_{1}^{2}+a x_{1} y_{1}+b y_{1}^{2}+c x_{1}+d y_{1}+e=0 \\
x_{2}^{2}+a x_{2} y_{2}+b y_{2}^{2}+c x_{2}+d y_{2}+e=0 \\
x_{3}^{2}+a x_{3} y_{3}+b y_{3}^{2}+c x_{3}+d y_{3}+e=0 \\
x_{4}^{2}+a x_{4} y_{4}+b y_{4}^{2}+c x_{4}+d y_{4}+e=0 \\
x_{5}^{2}+a x_{5} y_{5}+b y_{5}^{2}+c x_{5}+d y_{5}+e=0
\end{array} .\right.
$$

Or, equivalently: $\left\{\begin{array}{l}a x_{1} y_{1}+b y_{1}^{2}+c x_{1}+d y_{1}+e=-x_{1}^{2} \\ a x_{2} y_{2}+b y_{2}^{2}+c x_{2}+d y_{2}+e=-x_{2}^{2} \\ a x_{3} y_{3}+b y_{3}^{2}+c x_{3}+d y_{3}+e=-x_{3}^{2} \\ a x_{4} y_{4}+b y_{4}^{2}+c x_{4}+d y_{4}+e=-x_{4}^{2} \\ a x_{5} y_{5}+b y_{5}^{2}+c x_{5}+d y_{5}+e=-x_{5}^{2}\end{array}\right.$. The corresponding augmented matrix
of this linear system in the unknowns a, b, c, d, e is $\quad[A \mid \mathbf{b}]=\left[\begin{array}{lllll|l}x_{1} y_{1} & y_{1}^{2} & x_{1} & y_{1} & 1 & -x_{1}^{2} \\ x_{2} y_{2} & y_{2}^{2} & x_{2} & y_{2} & 1 & -x_{2}^{2} \\ x_{3} y_{3} & y_{3}^{2} & x_{3} & y_{3} & 1 & -x_{3}^{2} \\ x_{4} y_{4} & y_{4}^{2} & x_{4} & y_{4} & 1 & -x_{4}^{2} \\ x_{5} y_{5} & y_{5}^{2} & x_{5} & y_{5} & 1 & -x_{5}^{2}\end{array}\right]$.
Solve this system using GEM or GJEM to determine the unknowns a, b, c, d, e.

IV Temperature Distribution: Let D be a rectangular lamina in \mathbb{R}^{2} (a thin plate) that is insulated so that heat flow can only occur across its 4 sides and its 4 corners are insulated. Suppose that the sides are kept at fixed temperatures as shown below. We want to estimate the temperature at interior points. One method is to partition D into small rectangular regions as shown below and assume that the temperature at a node is the average of its temperatures at its 4 nearest node (this is simplistic, but this is just to show the method). Find the temperature at the nodes shown below:

$\Longrightarrow\left\{\begin{array}{l}T_{1}=\frac{100+60+0+T_{2}}{4} \\ T_{2}=\frac{100+T_{1}+0+20}{4}\end{array} \Longrightarrow\left\{\begin{array}{l}4 T_{1}-T_{2}=160 \\ -T_{1}+4 T_{2}=120\end{array} \Longrightarrow T_{1}=\frac{152}{3} \approx 50.67^{\circ}, T_{2}=\frac{128}{3} \approx 42.67^{\circ}\right.\right.$

$$
0,1,1,2,3,5,8,13, \cdots
$$

is defined by the difference equation $F_{k+1}=F_{k}+F_{k-1} \quad\left(^{*}\right)$
where $F_{1}=0$ and $F_{2}=1$ and $k=2,3, \cdots$. Thus $F_{3}=1, F_{4}=2, F_{5}=3, F_{6}=5, F_{7}=8, \cdots$.
This sequence occurs in many places, even in nature - flowers, trees, honey bees, genetics, etc. This sequence is also associated with the Golden Ratio $\varphi=\frac{1+\sqrt{5}}{2}$. There are entire books written on the Fibonacci sequence and also on the Golden Ratio.

Question: How can we find the $n^{\text {th }}$ Fibonacci number F_{n} when n is large?
Solution: Let $\mathbf{u}_{k}=\left[\begin{array}{c}F_{k+1} \\ F_{k}\end{array}\right]$ and note that the single equation $\left(^{*}\right)$ is equivalent to the system

$$
\left\{\begin{array}{l}
F_{k+1}=F_{k}+F_{k-1} \\
F_{k}=F_{k}
\end{array}\right.
$$

In matrix form, this system is $\mathbf{u}_{k}=\left[\begin{array}{c}F_{k+1} \\ F_{k}\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{c}F_{k} \\ F_{k-1}\end{array}\right]=A \mathbf{u}_{k-1}$, where $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$. Hence for $k=2,3,4 \cdots$ we get

$$
\mathbf{u}_{k}=A \mathbf{u}_{k-1} \quad(*)
$$

Since $\mathbf{u}_{2}=A \mathbf{u}_{1}$, where $\mathbf{u}_{1}=\left[\begin{array}{c}F_{2} \\ F_{1}\end{array}\right]=\left[\begin{array}{l}1 \\ 0\end{array}\right]$, we can now iterate $(*)$ as follows:

$$
\begin{aligned}
& \mathbf{u}_{3}=A \mathbf{u}_{2}=A\left(A \mathbf{u}_{1}\right)=A^{2} \mathbf{u}_{1} \\
& \mathbf{u}_{4}=A \mathbf{u}_{3}=A\left(A^{2} \mathbf{u}_{1}\right)=A^{3} \mathbf{u}_{1}
\end{aligned}
$$

We end up with a formula

$$
\mathbf{u}_{k}=\left[\begin{array}{c}
F_{k+1} \tag{**}\\
F_{k}
\end{array}\right]=A^{k-1} \mathbf{u}_{1}
$$

and we can obtain any Fibonacci number F_{k} we wish simply by multiplying a power of A and the fixed column vector \mathbf{u}_{1}.

For example, suppose we needed the $11^{\text {th }}$ Fibonacci number F_{11}. Let $k=10$ we can compute $A^{9}=\left[\begin{array}{ll}55 & 34 \\ 34 & 21\end{array}\right]$ and we see that $(* *)$ becomes

$$
\mathbf{u}_{10}=\left[\begin{array}{l}
F_{11} \\
F_{10}
\end{array}\right]=A^{9} \mathbf{u}_{1}=\left[\begin{array}{ll}
55 & 34 \\
34 & 21
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
55 \\
34
\end{array}\right], \text { hence } \boldsymbol{F}_{\mathbf{1 1}}=\mathbf{5 5} \text { and } F_{10}=34 \text { (for free!). }
$$

NOTE: An easy method for computing A^{k} will be given later.

VI Partial Fractions: Find a Partial Fraction Decomposition for $\frac{3 x^{3}+3 x^{2}+3 x-1}{x^{2}\left(x^{2}+1\right)}$. Solution:

$$
\begin{aligned}
\frac{3 x^{3}+3 x^{2}+3 x-1}{x^{2}\left(x^{2}+1\right)} & =\frac{A}{x}+\frac{B}{x^{2}}+\frac{C x+D}{x^{2}+1} \\
& =\frac{A x\left(x^{2}+1\right)+B\left(x^{2}+1\right)+x^{2}(C x+D)}{x^{2}\left(x^{2}+1\right)}
\end{aligned}
$$

$\Longrightarrow A x\left(x^{2}+1\right)+B\left(x^{2}+1\right)+x^{2}(C x+D)=3 x^{3}+3 x^{2}+3 x-1$
$\Longrightarrow x^{3}(A+C)+x^{2}(B+D)+x(A)+(B)=3 x^{3}+3 x^{2}+3 x-1$
$\Longrightarrow\left\{\begin{array}{cl}A+C & =3 \\ B+D & =3 \\ A & =3 \\ B & =-1\end{array} \Longrightarrow\left[\begin{array}{llll}1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right]\left[\begin{array}{l}A \\ B \\ C \\ D\end{array}\right]=\left[\begin{array}{r}3 \\ 3 \\ 3 \\ -1\end{array}\right]\right.$
Thus the augmented matrix becomes

$$
\left[\begin{array}{rrrr|r}
1 & 0 & 1 & 0 & 3 \\
0 & 1 & 0 & 1 & 3 \\
1 & 0 & 0 & 0 & 3 \\
0 & 1 & 0 & 0 & -1
\end{array}\right] \sim \cdots \cdots \sim\left[\begin{array}{rrrr|r}
\boxed{1} & 0 & 0 & 0 & 3 \\
0 & 1 & 0 & 0 & -1 \\
0 & 0 & \boxed{1} & 0 & 0 \\
0 & 0 & 0 & 1 & 4
\end{array}\right] \Longrightarrow A=3, B=-1, C=0, D=4
$$

Hence

$$
\frac{3 x^{3}+3 x^{2}+3 x-1}{x^{2}\left(x^{2}+1\right)}=\frac{3}{x}-\frac{1}{x^{2}}+\frac{4}{x^{2}+1}
$$

VII Leontief Model - Nobel Prize: Our economy has 3 industries: coal, electricity, and auto. To produce $\$ 1$ of each we get the data:

Requires \longrightarrow	Coal	Elect	Auto
$s_{1}=$ Coal Industry	$\$ 0.10$	$\$ 0.25$	$\$ 0.20$
$s_{2}=$ Electricity Industry	$\$ 0.30$	$\$ 0.40$	$\$ 0.50$
$s_{3}=$ Auto Industry	$\$ 0.10$	$\$ 0.15$	$\$ 0.10$

Suppose one week demand is $\$ 50 \mathrm{~K}$ for Coal; $\$ 75 \mathrm{~K}$ for Elect; $\$ 125 \mathrm{~K}$ for Auto.
Thus $D=\left[\begin{array}{c}50,000 \\ 75,000 \\ 125,000\end{array}\right]$. Find production levels to meet internal and external demands for each of the three industries.

Solution: Define $a_{i j}$ and p_{j} as:
$a_{i j}=\#$ units (dollars) produced by Industry s_{i} to produce 1 unit (\$1) of Industry s_{j}
$p_{j}=$ production level of Industry s_{j}
$\Longrightarrow a_{i j} p_{j}=\#$ units (dollars) produced by s_{i} and consumed by s_{j}
Hence total number of units (dollars) produced by s_{i} is

$$
a_{i 1} p_{1}+a_{i 2} p_{2}+a_{i 3} p_{3} \quad(\text { internal demand })
$$

Now $p_{i}+d_{i}$ is the external demand for Industry s_{i}. Hence in order to meet internal and external demands for Industry s_{i}, we need $a_{i 1} p_{1}+a_{i 2} p_{2}+a_{i 3} p_{3}=p_{i}+d_{i}$. Thus for all three industries we get the linear system:

$$
\left\{\begin{array}{l}
a_{11} p_{1}+a_{12} p_{2}+a_{13} p_{3}=p_{1}+d_{1} \\
a_{21} p_{1}+a_{22} p_{2}+a_{23} p_{3}=p_{2}+d_{2} \\
a_{31} p_{1}+a_{32} p_{2}+a_{33} p_{3}=p_{3}+d_{3}
\end{array}\right.
$$

Thus, $A P=P+D$ where $A=\left[a_{i j}\right]=\left[\begin{array}{ccc}0.10 & 0.25 & 0.20 \\ 0.30 & 0.40 & 0.50 \\ 0.10 & 0.15 & 0.10\end{array}\right], D=\left[\begin{array}{c}50,000 \\ 75,000 \\ 125,000\end{array}\right], P=\left[\begin{array}{l}p_{1} \\ p_{2} \\ p_{3}\end{array}\right]$.
Solving for P :

$$
\begin{aligned}
A P & =P+D \\
A P-P & =D \\
A P-I P & =D \\
(A-I) P & =D \\
(A-I)^{-1}(A-I) P & =(A-I)^{-1} D \\
P & =(A-I)^{-1} D
\end{aligned}
$$

Applying this to our 3 industry economy, we get

$$
P=\left[\begin{array}{l}
p_{1} \\
p_{2} \\
p_{3}
\end{array}\right]=\left[\begin{array}{l}
\$ 229,921.59 \\
\$ 437,795.27 \\
\$ 237,401.57
\end{array}\right]
$$

