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Analysis of data is an important task in data managements systems. Many mathematical tools are 
used in data analysis. A new division of data management has appeared in machine learning, 
linear algebra, an optimal tool to analyse and manipulate the data. Data science is a multi-
disciplinary subject that uses scientific methods to process the structured and unstructured data 
to extract the knowledge by applying suitable algorithms and systems. The strength of linear 
algebra is ignored by the researchers due to the poor understanding. It powers major areas of 
Data Science including the hot fields of Natural Language Processing and Computer Vision. The 
data science enthusiasts finding the programming languages for data science are easy to analyze 
the big data rather than using mathematical tools like linear algebra. Linear algebra is a must-
know subject in data science. It will open up possibilities of working and manipulating data. In 
this paper, some applications of Linear Algebra in Data Science are explained. 
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INTRODUCTION 
 

Data science is the field of study that combines domain 
expertise, programming skills, and knowledge of 
mathematics and statistics to extract meaningful insights 
from data. Data science practitioners apply machine 
learning algorithms to numbers, text, images, video, audio, 
and more to produce artificial intelligence systems to 
perform tasks that ordinarily require human intelligence. In 
turn, these systems generate insights which analysts and 
business users can translate into tangible business value 
(Ambrust et al., 2010). Machine learning is the branch of 
data science used to design algorithms that automatically 
extract valuable information from data. The focus here is 
on “automatic”, i.e., machine learning is general-purpose 
methodologies that can be applied on datasets, while 
producing something that is meaningful (Kakhani et al., 
2015; Philip et al., 2014). 
 
Linear algebra is the branch of mathematics concerning 
linear equations, linear functions and their representations 
through matrices and vector spaces. It helps us to 
understand geometric terms in higher dimensions, and 
perform mathematical operations on them. By definition, 
algebra deals primarily with scalars (one-dimensional 
entities), but Linear Algebra has vectors and matrices 
(entities which possess two or more dimensional 
components) to deal with linear equations and functions 
(Will, 2014). 

Linear Algebra is the heart to almost all areas of 
mathematics like geometry and functional analysis 
(Hilbert and Lopez, 2011). Its concepts are a crucial 
prerequisite for understanding the theory behind Data 
Science. The data scientist doesn’t need to 
understand Linear Algebra before getting started in Data 
Science, but at some point, it is necessary to understand 
how the different algorithms really work. Linear algebra in 
data science is used as follows. 
 
Scalars, Vectors, Matrices and Tensors 
 

• A scalar is a single number 

• A vector is an array of numbers. 

• A matrix is a 2-D array 

• A tensor is a n-dimensional array with n>2 

 
Fig.1. Representation of data in data science using linear 
algebra 
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APPLICATIONS OF LINEAR ALGEBRA IN DATA 
SCIENCES 

 
Fig. 2: Applications of linear algebra in data sciences 
 
Linear Algebra in Machine Learning 
 
The following are the some application areas of linear 
algebra in machine learning. 
1. Loss functions 
2. Regularization 
3. Covariance Matrix 
4. Support Vector Machine Classification 
 
Loss functions 
 
Consider how good a model is, say a Linear Regression 
model, and fits a given data: 

• Some arbitrary prediction function (a linear function for 
a Linear Regression Model) 

• Use it on the independent features of the data to 
predict the output 

• Calculate how far-off the predicted output is from the 
actual output 

• Use these calculated values to optimize prediction 
function using some strategy like Gradient Descent 

 
It is difficult to calculate how different prediction is from the 
expected output. This issue can be resolved using loss 
function. A loss function is an application of the Vector 
Norm in Linear Algebra. The norm of a vector can simply 
be its magnitude. There are many types of vector norms. 
Here, discussed two types. 
 
L1 Norm: Also known as the Manhattan Distance or 
Taxicab Norm. The L1 Norm is the distance travelled from 

the origin to the vector if the only permitted directions are 
parallel to the axes of the space. 

 
In this 2D space, consider the vector (3, 4) by traveling 3 
units along the x-axis and then 4 units parallel to the y-axis 
(as shown). Or travelled 4 units along the y-axis first and 
then 3 units parallel to the x-axis. In either case, travelled 
a total of 7 units. 
 
L2 Norm:  Also known as the Euclidean Distance. L2 
Norm is the shortest distance of the vector from the origin 
as shown by the red path in the figure below: 

 
Fig. 3: Euclidean Distance 
 
This distance is calculated using the Pythagoras Theorem. 
It is the square root of (3^2 + 4^2), which is equal to 5. The 
predicted values are stored in a vector P and the expected 
values are stored in a vector E. Then P-E is the difference 
vector. And the norm of P-E is the total loss for the 
prediction. 
 
Regularization 
 
Regularization is a very important concept in data science. 
It’s a technique we use to prevent models from overfitting. 
Regularization is actually another application of the Norm. 
A model is said to overfit when it fits the training data too 
well. Such a model does not perform well with new data 
because it has learned even the noise in the training data. 
It will not be able to generalize on data that it has not seen 
before. The below illustration sums up this idea really well: 
 
Regularization penalizes overly complex models by adding 
the norm of the weight vector to the cost function. Since 
we want to minimize the cost function, we will need to 
minimize this norm. This causes unrequired components 
of the weight vector to reduce to zero and prevents the 
prediction function from being overly complex. 
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Fig 4: Regularization 
 
The L1 and L2 norms we discussed above are used in two 
types of regularization: 

• L1 regularization used with Lasso Regression 

• L2 regularization used with Ridge Regression 
 
Covariance Matrix 
 
Bivariate analysis is an important step in data exploration 
to study the relationship between pairs of variables. 
Covariance or Correlation is measures used to study 
relationships between two continuous variables. 
 
Covariance indicates the direction of the linear relationship 
between the variables. A positive covariance indicates that 
an increase or decrease in one variable is accompanied 
by the same in another. A negative covariance indicates 
that an increase or decrease in one is accompanied by the 
opposite in the other. 
 

 
Fig 5: Co-variance 
 
On the other hand, correlation is the standardized value of 
Covariance. A correlation value tells us both the strength 
and direction of the linear relationship and has the range 
from -1 to 1. Using the concepts of transpose and matrix 
multiplication in Linear Algebra, there is another 
expression for the covariance matrix: 

𝑐𝑜𝑣 = 𝑋𝑇𝑋 

Here, X is the standardized data matrix containing all 
numerical features. 

Support Vector Machine Classification 
 
Support vector machine is the most common classification 
algorithms that regularly produces remarkable results. It is 
an application of the concept of Vector Spaces in Linear 
Algebra. Support Vector Machine, or SVM, is a 
discriminative classifier that works by finding a decision 
surface. It is a supervised machine learning algorithm. In 
this algorithm, we plot each data item as a point in an n-
dimensional space (where n is the number of features) with 
the value of each feature being the value of a particular 
coordinate. Then, perform classification by finding the 
hyperplane that differentiates the two classes very well i.e. 
with the maximum margin, which is C is this case. 

 
Fig 6: Support Vector Machine 
 
A hyperplane is a subspace whose dimensions are one 
less than its corresponding vector space, so it would be a 
straight line for a 2D vector space, a 2D plane for a 3D 
vector space and so on. Again, Vector Norm is used to 
calculate the margin. 
 
Linear Algebra in Dimensionality Reduction 

1. Principal Component Analysis 

2. Singular Value Decomposition 
 

1. Principal Component Analysis 
 

Principal Component Analysis, or PCA, is an unsupervised 
dimensionality reduction technique. PCA finds the 
directions of maximum variance and projects the data 
along them to reduce the dimensions. Without going into 
the math, these directions are the eigenvectors of the 
covariance matrix of the data (Gupta et al., 2010; Slavkovic 
and Jevtic, 2012) 

https://www.youtube.com/watch?v=PFDu9oVAE-g
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Eigenvectors for a square matrix are special non-zero 
vectors whose direction does not change even after 
applying linear transformation (which means multiplying) 
with the matrix. They are shown as the red-colored vectors 
in the figure below: 
 

 
Fig 7: Eigen Vectors 
 
2. Singular Value Decomposition 
 
Singular Value Decomposition (SVD) is underrated and 
not discussed enough. It is an amazing technique of matrix 
decomposition with diverse applications. Here focused 
about SVD in Dimensionality Reduction. Specifically, this 
is known as Truncated SVD. 

• Start with the large m x n numerical data matrix A, 
where m is the number of rows and n is the number of 
features 

 
 
Decompose it into 3 matrices as shown here: 
Choose k singular values based on the diagonal matrix 
and truncate (trim) the 3 matrices accordingly: 

 
Finally, multiply the truncated matrices to obtain the 
transformed matrix A_k. It has the dimensions m x k. So, 
it has k features with k < n. On applying truncated SVD to 
the Digits data, the below plot was obtained. 
 

 
 

Linear Algebra in Natural Language Processing 

1. Word Embeddings 

2. Latent Semantic Analysis 
 
Word Embeddings 
 

Machine learning algorithms cannot work with raw textual 
data. The raw data needs to be converted to some 
numerical and statistical features to create model inputs. 
There are many ways for extracting features from text 
data, such as: 

• Meta attributes of a text, like word count, special 
character count, etc. 

• NLP attributes of text using Parts-of-Speech tags and 
Grammar Relations like the number of proper nouns 

• Word Vector Notations or Word Embeddings 
 

Word Embeddings is a way of representing words as low 
dimensional vectors of numbers while preserving their 
context in the document. These representations are 
obtained by training different neural networks on a large 
amount of text which is called a corpus. They also help in 
analyzing syntactic similarity among words: 
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Word2Vec and GloVe are two popular models to create Word Embeddings. 
 

Latent Semantic Analysis 
 

Latent Semantic Analysis (LSA), or Latent Semantic 
Indexing, is one of the techniques of Topic Modeling. It is 
another application of Singular Value Decomposition. 
Latent means ‘hidden’. True to its name, LSA attempts to 
capture the hidden themes or topics from the documents 
by leveraging the context around the words. 

• First, generate the Document-Term matrix for the data 
 

Use SVD to decompose the matrix into 3 matrices: 

• Document-Topic matrix 

• Topic Importance Diagonal Matrix 

• Topic-term matrix 

• Truncate the matrices based on the importance of 
topics 

 

Linear Algebra in Computer Vision 
 

Deep learning methods can achieve state – of – the – art 
results on challenging computer vision problems such as 
image classification, object detection and face recognition. 

• Image representation as Tensors 

• Convolution and Image Processing 
 
Image representation as Tensors 
 
A computer does not process images as humans do. 
Machine learning algorithms need numerical features to 
work with. A digital image is made up of small indivisible 
units called pixels. Consider the figure below: 

 

 
This grayscale image of the digit zero is made of 8 x 8 = 
64 pixels. Each pixel has a value in the range 0 to 255. A 
value of 0 represents a black pixel and 255 represent a 
white pixel. Conveniently, an m x n grayscale image can 
be represented as a 2D matrix with m rows and n columns 
with the cells containing the respective pixel values: 
 

 
 
A colored image is generally stored in the RGB system. 
Each image can be thought of as being represented by 
three 2D matrices, one for each R, G and B channel. A 
pixel value of 0 in the R channel represents zero intensity 
of the Red color and of 255 represents the full intensity of 
the Red color. Each pixel value is then a combination of 
the corresponding values in the three channels: In reality, 
instead of using 3 matrices to represent an image, a tensor 
is used. A tensor is a generalized n-dimensional matrix. 
For an RGB image, a 3rd ordered tensor is used. Imagine 
it as three 2D matrices stacked one behind another: 
 
Convolution and Image Processing 
 
2D Convolution is a very important operation in image 
processing. It consists of the below steps: 

• Start with a small matrix of weights, called a kernel or 
a filter 
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• Slide this kernel on the 2D input data, performing 
element-wise multiplication 

• Add the obtained values and put the sum in a single 
output pixel 

 
The function can seem a bit complex but it’s widely used 
for performing various image processing operations like 
sharpening and blurring the images and edge detection. 
 
 
CONCLUSION 
 
Linear algebra has vast uses in real world. Linear algebra 
methods are applied on the data science to improve the 
efficiency of the algorithms to attain the more accurate 
results. In this paper, compiled the applications of linear 
algebra in data sciences and given an insight of each 
method. The data scientists can be used linear algebra as 
tool analyze the data sets. Machine learning approaches 
are of particular interest considering steadily increasing 
search outputs and accessibility of the existing evidence is 
a particular challenge of the research field quality 
improvement. 
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