HW \# 7

1 TRUE or FALSE Question: If $S: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ is a Linear Transformation, (LT), with

$$
S\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=\left[\begin{array}{r}
1 \\
-3
\end{array}\right] \text { and } S\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
2
\end{array}\right], \text { then } S\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right]=\left[\begin{array}{l}
1 \\
3
\end{array}\right]
$$

2 MULTIPLE CHOICE Question: If $T: \mathcal{P}_{2} \longrightarrow \mathbb{R}^{2}$ is the Linear Transformation (LT) where

$$
T\left(4+x^{2}\right)=\left[\begin{array}{r}
2 \\
-3
\end{array}\right] \text { and } T\left(6 x-x^{2}\right)=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

then $T\left(2-9 x+2 x^{2}\right)=$? (Justify your answer.)
A. $\left[\begin{array}{r}1 \\ -3\end{array}\right]$
B. $\left[\begin{array}{r}-1 \\ 1\end{array}\right]$
C. $\left[\begin{array}{r}2 \\ -2\end{array}\right]$
D. $\left[\begin{array}{l}-2 \\ -4\end{array}\right]$
E. Cannot be determined

3 Find $\left(\frac{1}{12} A^{2}\right)^{-1}$ if $A=\left[\begin{array}{rrr}1 & -1 & 2 \\ 1 & 0 & 0 \\ 2 & 3 & 0\end{array}\right]$.
4 Let $\mathcal{B}=\left\{2,\left(x+x^{2}\right),(1+x)^{2}\right\}$ be an ordered basis for \mathcal{P}_{2}, and $p(x)=1-2 x+x^{2}$ and $q(x)=3 x^{2}-1$. Compute the following:
(a) $[p(x)]_{\mathcal{B}}+[q(x)]_{\mathcal{B}}$
(b) $\left\|[p(x)]_{\mathcal{B}}\right\|$
(c) $[p(x)]_{\mathcal{B}} \bullet[q(x)]_{\mathcal{B}}$

05 Let $T: \mathcal{P}_{2} \longrightarrow \mathbb{R}^{2}$ be the transformation defined by

$$
T(p(x))=\left[\begin{array}{c}
p(1) \\
p^{\prime}(1)
\end{array}\right], \quad \text { i.e. } \quad T\left(a+b x+c x^{2}\right)=\left[\begin{array}{c}
(a+b+c) \\
(b+2 c)
\end{array}\right]
$$

(a) Show that T is a Linear Transformation (LT).
(b) Find the matrix representation M_{T} for T (Standard ordered basis for \mathcal{P}_{2} and \mathbb{R}^{2}).

6 If A and Q are $n \times n$ matrices and Q is invertible, show that
(a) $\left(Q \mathbf{A} Q^{-1}\right)^{2}=Q \mathbf{A}^{2} Q^{-1}$.
(b) If A is also invertible, then $\left(Q \mathbf{A} Q^{-1}\right)^{-1}=Q \mathbf{A}^{-1} Q^{-1}$.

