Submitting HW Tips

HW \# 10

(Several matrices below are repeated in the problems)
1 Which are diagonalizable? If the matrix is diagonalizable, find Q and D.
(a) $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$
(b) $A=\left[\begin{array}{rrr}1 & 2 & -1 \\ 0 & 3 & -1 \\ 0 & -2 & 2\end{array}\right]$
(c) $A=\left[\begin{array}{rr}1 & 1 \\ -4 & 5\end{array}\right]$

2 Let $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right]$.
(a) Show A is diagonalizable.
(b) Using part(a), compute A^{20} and e^{A}.
(c) If $\mathbf{v}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$, compute $A^{20} \mathbf{v}$.

3 If $A=\left[\begin{array}{rr}1 & 1 \\ -4 & 5\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$, compute $A^{20} \mathbf{v}$.
4 Find all eigenvalues and a corresponding eigenvector for each eigenvalue of $A=\left[\begin{array}{rr}1 & -4 \\ 1 & 1\end{array}\right]$.
5 Find two linearly independent solutions to this linear system of differential equations:

$$
\mathbf{x}^{\prime}(t)=\left[\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right] \mathbf{x}(t)
$$

(This type of problem is covered in great detail in MA366/266/265/262/303/527.)

