Submitting HW Tips

HW # 10

(Several matrices below are repeated in the problems)

1 Which are diagonalizable? If the matrix is diagonalizable, find Q and D.

(a)
$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
 (b) $A = \begin{bmatrix} 1 & 2 & -1 \\ 0 & 3 & -1 \\ 0 & -2 & 2 \end{bmatrix}$ (c) $A = \begin{bmatrix} 1 & 1 \\ -4 & 5 \end{bmatrix}$

- **2** Let $A = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$.
 - (a) Show A is diagonalizable.
 - (b) Using part(a), compute A^{20} and e^A .
 - (c) If $\mathbf{v} = \begin{bmatrix} 1\\ 2 \end{bmatrix}$, compute $A^{20} \mathbf{v}$.
- **3** If $A = \begin{bmatrix} 1 & 1 \\ -4 & 5 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, compute $A^{20}\mathbf{v}$.

4 Find all eigenvalues and a corresponding eigenvector for each eigenvalue of $A = \begin{bmatrix} 1 & -4 \\ 1 & 1 \end{bmatrix}$.

5 Find two linearly independent solutions to this linear system of differential equations:

$$\mathbf{x}'(t) = \left[\begin{array}{cc} 1 & 1 \\ 0 & 2 \end{array} \right] \, \mathbf{x}(t) \, .$$

(This type of problem is covered in great detail in MA366/266/265/262/303/527.)