Submitting HW Tips

HW #11

- Compute the flux of $\overrightarrow{\mathbf{F}}$ across S, where $\overrightarrow{\mathbf{F}}(x,y,z) = y\mathbf{i} x\mathbf{j} + z\mathbf{k}$ and S is that part of the paraboloid $z = 9 x^2 y^2$ which lies above the plane z = 5 and $\overrightarrow{\mathbf{N}}$ is the upward unit normal. What is the value of $\iint_S \left(\overrightarrow{\mathbf{F}} \bullet \overrightarrow{\mathbf{N}}\right) dS$?
- **2** Evaluate the line integral $I = \int_C x^2 y \, dx + y^2 \, dy$, along the simple closed curve C that is the positively oriented boundary of the region between $y = 4 x^2$ and y = 0.
- **3** Compute the line integral $J = \int_C (-5xy) dy + (x^3 + \cos^2 x 4y) dx$, where C is the positively oriented boundary of the rectangle $R = [0, 2] \times [0, 3]$.
- Using <u>Green's Theorem</u>, find the value of the line integral $K = \int_C y \, dx + (x^2 + y^2) \, dy$, where C is the circle $(x-3)^2 + y^2 = 9$ traversed in a positive direction. *Hint*: Use centroids.
- **5** Let S be the surface $z = x^2 + y^2$ below the plane z = 4 with downward normal $\overrightarrow{\mathbf{r}}$ and $\overrightarrow{\mathbf{F}}(x,y,z) = (-yz,\,xz,\,y)$. Compute $\iint_S \left(\nabla \times \overrightarrow{\mathbf{F}}\right) \bullet d\overrightarrow{\mathbf{S}}$, using **Stokes' Theorem**.
- **6** Let $\overrightarrow{\mathbf{F}} = x \mathbf{i} + y \mathbf{j} 3z \mathbf{k}$. Compute $\iint_S \overrightarrow{\mathbf{F}} \cdot d\overrightarrow{\mathbf{S}}$, where S is the closed surface consisting of that part of the cone $z = \sqrt{x^2 + y^2}$ below the plane z = 3, including the top, with outward normal. Compute $\iint_S \overrightarrow{\mathbf{F}} \cdot d\overrightarrow{\mathbf{S}}$ directly by using the **Divergence Theorem**.
- **7** Section 8.3 (Page 459): #1.
- Let S be the oriented surface surface consisting of that part of the sphere $x^2 + y^2 + z^2 = 13$ above the plane z = -3, with outward unit normal $\overrightarrow{\mathbf{N}}$. If $\overrightarrow{\mathbf{F}} = \left(2y, -2x, \cos(xyz)\right)$, evaluate the surface integral $\iint_S \left(\nabla \times \overrightarrow{\mathbf{F}}\right) \bullet d\overrightarrow{\mathbf{S}}$.