Some Applications of Linear Systems

I <u>Network Flow</u>: Suppose cars enter and leave intersections at certain rates per hour. For example 55 cars per hour leave the intersection D (see below). Find x_1, x_2, x_3 , assuming that the net flow of cars into an intersection is equal to the net flow of cars out of the intersection:

Intersection \mathbf{A} :	$30 = x_2 + x_1$
Intersection \mathbf{B} :	$x_2 + x_3 = 35$
Intersection \mathbf{C} :	$60 = x_3 + 15$
Intersection \mathbf{D} :	$x_1 + 15 = 55$

$$\implies \left\{ \begin{array}{ccc} x_1 + x_2 = 30 \\ x_2 + x_3 = 35 \\ x_3 = 45 \\ x_1 = 40 \end{array} \right\} \implies \left[A \, \middle| \, \mathbf{b} \right] = \left[\begin{array}{cccc} 1 & 1 & 0 & | & 30 \\ 0 & 1 & 1 & | & 35 \\ 0 & 0 & 1 & | & 45 \\ 1 & 0 & 0 & | & 40 \end{array} \right] \sim \left[\begin{array}{cccc} 1 & 0 & 0 & | & 40 \\ 0 & 1 & 0 & | & -10 \\ 0 & 0 & 1 & | & 45 \\ 0 & 0 & 0 & | & 0 \end{array} \right]$$

 $x_1 = 40$

Thus $x_2 = -10$ (this means direction in figure should be in *opposite* direction in the figure above) $x_3 = -45$ **II** Polynomial Interpolation: Given n+1 fixed points (x_1, y_1) , (x_2, y_2) , \cdots , (x_{n+1}, y_{n+1}) in \mathbb{R}^2 that have distinct x coordinates, then there exists a unique polynomial of degree n of the form

$$y = p(x) = a_0 + a_1 x + \dots + a_n x^n$$

such that $p(x_1) = y_1, p(x_2) = y_2, \dots p(x_{n+1}) = y_{n+1}$:

Thus we obtain the linear system in the unknowns variables a_0, a_1, \dots, a_{n+1} :

For example, find the (unique) quadratic polynomial that passes through the 3 points (-1, 7), (1, 5), (2, 10).

 $\underbrace{Solution}_{\text{Solution}}: \text{ Let } (x_1, y_1) = (-1, 7), (x_2, y_2) = (1, 5), (x_3, y_3) = (2, 10) \text{ and } y = p(x) = a_0 + a_1 x + a_2 x^2.$ Since $p(x_1) = y_1, p(x_2) = y_2, p(x_3) = y_3$ we get the linear system $\begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & 1 \\ 1 & 2 & 4 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 7 \\ 5 \\ 10 \end{bmatrix}.$

Use **GEM** or **GJEM** to solve the system to obtain $a_0 = 4$, $a_1 = -1$, $a_2 = 2$. Hence the unique polynomial of degree 2 is $y = p(x) = 4 - x + 2x^2$.

III Computing Planetary Orbits: Kepler's 1^{st} Law of Planetary Motion says that a planet travels around the sun in an elliptical orbit in a plane with the sun at one focus of the ellipse. Hence the orbit of a planet can be described by the general formula for a conic section in the plane:

$$x^{2} + axy + by^{2} + cx + dy + e = 0$$

If a planet's position is known at just <u>five</u> (5) different points $(x_1, y_1), (x_2, y_2), \dots, (x_5, y_5)$, then we can determine the equation of the planet's orbit by solving for the unknowns a, b, c, d, e:

Solve this system using **GEM** or **GJEM** to determine the unknowns a, b, c, d, e.

IV Temperature Distribution: Let D be a rectangular lamina in \mathbb{R}^2 (a thin plate) that is insulated so that heat flow can only occur across its 4 sides and its 4 corners are insulated. Suppose that the sides are kept at fixed temperatures as shown below. We want to estimate the temperature at interior points. One method is to partition D into small rectangular regions as shown below and assume that the temperature at a node is the average of its temperatures at its 4 nearest node (this is simplistic, but this is just to show the method). Find the temperature at the nodes shown below:

$$\implies \begin{cases} T_1 = \frac{100 + 60 + 0 + T_2}{4} \\ T_2 = \frac{100 + T_1 + 0 + 20}{4} \end{cases} \implies \begin{cases} 4T_1 - T_2 = 160 \\ -T_1 + 4T_2 = 120 \end{cases} \implies T_1 = \frac{152}{3} \approx 50.67^\circ, \ T_2 = \frac{128}{3} \approx 42.67^\circ \end{cases}$$

V Difference Equations: The famous *Fibonacci sequence*

$$0, 1, 1, 2, 3, 5, 8, 13, \cdots$$

is defined by the difference equation $F_{k+1} = F_k + F_{k-1}$ (*) where $F_1 = 0$ and $F_2 = 1$ and $k = 2, 3, \cdots$. Thus $F_3 = 1$, $F_4 = 2$, $F_5 = 3$, $F_6 = 5$, $F_7 = 8$, \cdots . This sequence occurs in many places, even in nature - flowers, trees, honey bees, genetics, etc. This sequence is also associated with the **Golden Ratio** $\varphi = \frac{1 + \sqrt{5}}{2}$. There are entire books written on the Fibonacci sequence and also on the Golden Ratio.

Question: How can we find the n^{th} Fibonacci number F_n when n is large?

Solution: Let
$$\mathbf{u}_k = \begin{bmatrix} F_{k+1} \\ F_k \end{bmatrix}$$
 and note that the *single* equation (*) is equivalent to the system
$$\begin{cases} F_{k+1} = F_k + F_{k-1} \\ F_k = F_k \end{cases}$$

In matrix form, this system is $\mathbf{u}_k = \begin{bmatrix} F_{k+1} \\ F_k \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} F_k \\ F_{k-1} \end{bmatrix} = A\mathbf{u}_{k-1}$, where $A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$. Hence for $k = 2, 3, 4 \cdots$ we get

$$\mathbf{u}_k = A\mathbf{u}_{k-1} \quad (*)$$

Since $\mathbf{u}_2 = A\mathbf{u}_1$, where $\mathbf{u}_1 = \begin{bmatrix} F_2 \\ F_1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, we can now iterate (*) as follows:

$$\mathbf{u}_3 = A\mathbf{u}_2 = A(A\mathbf{u}_1) = A^2\mathbf{u}_1$$

$$\mathbf{u}_4 = A\mathbf{u}_3 = A(A^2\mathbf{u}_1) = A^3\mathbf{u}_1$$

$$\vdots$$

We end up with a formula

$$\mathbf{u}_{k} = \begin{bmatrix} F_{k+1} \\ F_{k} \end{bmatrix} = A^{k-1} \mathbf{u}_{1} \qquad (**)$$

and we can obtain any Fibonacci number F_k we wish simply by multiplying a power of A and the fixed column vector \mathbf{u}_1 .

For example, suppose we needed the 11th Fibonacci number
$$F_{11}$$
. Let $k = 10$ we can compute $A^9 = \begin{bmatrix} 55 & 34 \\ 34 & 21 \end{bmatrix}$ and we see that (**) becomes
 $\mathbf{u}_{10} = \begin{bmatrix} F_{11} \\ F_{10} \end{bmatrix} = A^9 \mathbf{u}_1 = \begin{bmatrix} 55 & 34 \\ 34 & 21 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 55 \\ 34 \end{bmatrix}$, hence $F_{11} = \mathbf{55}$ and $F_{10} = 34$ (for free!).

<u>NOTE</u>: An easy method for computing A^k will be given later.

VI <u>Partial Fractions</u>: Find a Partial Fraction Decomposition for $\frac{3x^3 + 3x^2 + 3x - 1}{x^2(x^2 + 1)}$. Solution:

$$\frac{3x^3 + 3x^2 + 3x - 1}{x^2(x^2 + 1)} = \frac{A}{x} + \frac{B}{x^2} + \frac{Cx + D}{x^2 + 1}$$
$$= \frac{Ax(x^2 + 1) + B(x^2 + 1) + x^2(Cx + D)}{x^2(x^2 + 1)}$$

$$\implies Ax(x^{2}+1) + B(x^{2}+1) + x^{2}(Cx+D) = 3x^{3} + 3x^{2} + 3x - 1$$

$$\implies x^{3}(A+C) + x^{2}(B+D) + x(A) + (B) = 3x^{3} + 3x^{2} + 3x - 1$$

$$\implies \begin{cases} A+C = 3\\ B+D = 3\\ A = 3\\ B = -1 \end{cases} \implies \begin{bmatrix} 1 & 0 & 1 & 0\\ 0 & 1 & 0 & 1\\ 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} A\\ B\\ C\\ D \end{bmatrix} = \begin{bmatrix} 3\\ 3\\ 3\\ -1 \end{bmatrix}$$

This the augmented matrix becomes

$$\begin{bmatrix} 1 & 0 & 1 & 0 & | & 3 \\ 0 & 1 & 0 & 1 & | & 3 \\ 1 & 0 & 0 & 0 & | & 3 \\ 0 & 1 & 0 & 0 & | & -1 \end{bmatrix} \sim \dots \sim \begin{bmatrix} \boxed{1} & 0 & 0 & 0 & | & 3 \\ 0 & \boxed{1} & 0 & 0 & | & -1 \\ 0 & 0 & \boxed{1} & 0 & 0 \\ 0 & 0 & 0 & \boxed{1} & | & 4 \end{bmatrix} \implies A = 3, B = -1, C = 0, D = 4$$

Hence

$$\frac{3x^3 + 3x^2 + 3x - 1}{x^2(x^2 + 1)} = \frac{3}{x} - \frac{1}{x^2} + \frac{4}{x^2 + 1}$$