The Derivative of ln(x) and More Chain Rule

The Derivative of ln(x)

$$\frac{d}{dx}\left[\ln(x)\right] = \frac{1}{x}$$

Example 1: Find the derivative of $h(x) = 2\ln(x)$.

$$h'(x) = \lambda\left(\frac{1}{x}\right) = \frac{2}{x}$$

Example 2: Find the derivative of $y = \ln(x^2 + 5)$.

$$f(u) = \ln(u) \quad g(x) = x^2 + 5$$

$$f'(u) = \frac{1}{u} \quad g'(x) = 2x$$

$$Y' = f'(g(x))g'(x) = \frac{1}{\chi^2 + 5} \cdot 2x = \frac{2x}{\chi^2 + 5}$$

Example 3: The position, in meters, of a particle moving on a straight line is given by $s(t) = (5t - 2)^2 \sqrt{3t}$, where t is measured in seconds. What is the velocity of the particle when t = 3?

Need product rule and chain rule!

$$V(t) = S'(t) = 2(5t-2)(5)\sqrt{3}t + (5t-2)^2 \frac{3}{2\sqrt{3}t}$$

$$V(3) = (2)(13)(5)(3) + (13)^{2}(\frac{3}{6})$$

$$= 390 + \frac{169}{2} = \boxed{\frac{949}{2} \text{ m/s}}$$

MA 16010 Lesson 11

Example 4: Find the derivative of $y = 3 \cot^2(4x)$.

$$Y = 3(\cot(4x))^{2} \text{ Need cham rule twice}.$$

$$f(u) = 3u^{2} \quad g(x) = \cot(4x)$$

$$f'(u) = 6u \quad h(v) = \cot(v) \quad k(x) = 4x$$

$$Y' = f'(g(x)) g'(x) \quad h'(v) = -\csc^{2}(v) \quad k'(x) = 4$$

$$Y' = (\cot(4x)(-\csc^{2}(ux)) \cdot 4 \quad = 7g'(x) = h'(k(x)) k'(x)$$

$$= -24 \cot(ux) \csc^{2}(ux)$$

Example 5: Find the derivative of $y = e^{2x} \sin(7x)$.

Need product rule and chain rule.

$$Y' = 2e^{2x} \sin(7x) + e^{2x} \cos(7x).7$$

= $2e^{2x} \sin(7x) + 7e^{2x} \cos(7x)$

MA 16010 Lesson 11

DIY

1. Find the derivative of the following function.

$$y = \ln \left[\sqrt{(x^2 + 3)(x^4 + 3x^2 + 1)} \right]$$

$$Y = \frac{1}{2} \ln \left[(x^{2}+3)(x^{4}+3x^{2}+1) \right]$$

$$= \frac{1}{2} \left(\ln (x^{2}+3) + \ln (x^{4}+3x^{2}+1) \right)$$

$$= \frac{1}{2} \ln (x^{2}+3) + \frac{1}{2} \ln (x^{4}+3x^{2}+1)$$

$$Y' = \frac{1}{2} \cdot \frac{2x}{x^2 + 3} + \frac{1}{2} \cdot \frac{4x^3 + 6x}{x^4 + 3x^2 + 1}$$

$$Y' = \frac{\chi}{\chi^2 + 3} + \frac{2\chi^3 + 3\chi}{\chi^4 + 3\chi^2 + 1}$$