Higher Order Derivatives

When we take the derivative of a function $f(x)$, the result is another function, $f^{\prime}(x)$. There's nothing stopping us from taking the derivative of the function $f^{\prime}(x)$, or taking the derivative again, and again, and again, ...

Notation

Suppose $y=f(x)$.

- First Derivative: $f^{(1)}(x)=f^{\prime}(x)=\frac{d}{d x} f(x)=y^{\prime}=\frac{d y}{d x}$
- $\underline{\text { Second Derivative: }} f^{(2)}(x)=f^{\prime \prime}(x)=\frac{d^{2}}{d x^{2}} f(x)=y^{\prime \prime}=\frac{d^{2} y}{d x^{2}}$
- Third Derivative: $f^{(3)}(x)=f^{\prime \prime \prime}(x)=\frac{d^{3}}{d x^{3}} f(x)=y^{\prime \prime \prime}=\frac{d^{3} y}{d x^{3}}$ \vdots
- $\underline{n}^{\text {th }}$ Derivative: $f^{(n)}(x)=\frac{d^{n}}{d x^{n}} f(x)=\frac{d^{n} y}{d x^{n}}$

Example 1: Find $f^{\prime \prime \prime}(x)$ for $f(x)=2 x^{5}+4 x^{3}+3$.

Example 2: If $f^{(3)}(x)=2 e^{3 x} \cos (2 x)$, find $f^{(4)}(x)$.

Acceleration

Recall that the first derivative of position is velocity. The second derivative of position (so the first derivative of velocity), is acceleration.

Example 3: The position of an object, in feet, is given by $s(t)=\frac{13}{3} t^{3}+39 t^{2}$, where t is measure in seconds. What is the acceleration of the object when its velocity is $2808 \mathrm{ft} / \mathrm{s}$?

DIY

1. Find the second derivative of $h(x)=3 x^{5} \ln (2 x)$.
2. Find the second derivative of $g(x)=\frac{x^{2}}{x-2}$.
