Higher Order Derivatives

When we take the derivative of a function f(x), the result is another function, f'(x). There's nothing stopping us from taking the derivative of the function f'(x), or taking the derivative again, and again, and again, ...

Notation

Suppose y = f(x).

- First Derivative: $f^{(1)}(x) = f'(x) = \frac{d}{dx}f(x) = y' = \frac{dy}{dx}$
- Second Derivative: $f^{(2)}(x) = f''(x) = \frac{d^2}{dx^2} f(x) = y'' = \frac{d^2y}{dx^2}$
- Third Derivative: $f^{(3)}(x) = f'''(x) = \frac{d^3}{dx^3} f(x) = y''' = \frac{d^3y}{dx^3}$
- $\underline{n}^{\text{th}}$ Derivative: $f^{(n)}(x) = \frac{d^n}{dx^n} f(x) = \frac{d^n y}{dx^n}$

Example 1: Find f'''(x) for $f(x) = 2x^5 + 4x^3 + 3$.

$$f'(x) = 10x^{4} + 12x^{2}$$

$$f''(x) = 40x^{3} + 24x$$

$$f'''(x) = 120x^{2} + 24$$

Example 2: If $f^{(3)}(x) = 2e^{3x}\cos(2x)$, find $f^{(4)}(x)$.

Need Product & chain rules!

$$f^{(4)}(x) = 6e^{3x}\cos(2x) + 2e^{3x}(-\sin(2x))^{2}$$
$$= \left[6e^{3x}\cos(2x) - 4e^{3x}\sin(2x)\right]$$

MA 16010 Lesson 12

Acceleration

Recall that the first derivative of position is velocity. The second derivative of position (so the first derivative of velocity), is *acceleration*.

Example 3: The position of an object, in feet, is given by $s(t) = \frac{13}{3}t^3 + 39t^2$, where t is measure in seconds. What is the acceleration of the object when its velocity is 2808 ft/s?

$$S'(t) = V(t) = 13t^2 + 78t$$

 $V(t) = 13t^2 + 78t = 2808$
 $13t^2 + 78t - 2808 = 0$
 $13(t^2 + 6t - 216) = 0$
 $13(t-12)(t+18) = 0$
 $t=12$
 $t=18$
 $t=18$

1. Find the second derivative of $h(x) = 3x^5 \ln(2x)$.

Need Product rule & chain rule.

$$h'(x) = 15x^4 \ln(2x) + 3x^5 \left(\frac{2}{2x}\right)$$

= $15x^4 \ln(2x) + 3x^4$

$$h''(x) = 60x^{3} \ln(2x) + 15x^{4} \left(\frac{2}{2x}\right) + 12x^{3}$$

$$= 60x^{3} \ln(2x) + 15x^{3} + 12x^{3}$$

$$= 60x^{3} \ln(2x) + 15x^{3} + 12x^{3}$$

$$= 60x^{3} \ln(2x) + 15x^{3} + 12x^{3}$$

2. Find the second derivative of $g(x) = \frac{x^2}{x-2}$.

$$g'(x) = \frac{2x(x-2)-x^2(1)}{(x-2)^2} = \frac{2x^2-4x-x^2}{(x-2)^2}$$

$$= \frac{\chi^2 - 4\chi}{(\chi - 2)^2}$$

$$g''(x) = \frac{(2x-4)(x-2)^2 - (x^2-4x)2(x-2)}{(x-2)^4}$$

$$= \frac{(2x-4)(x-2) - 2(x^2-4x)}{(x-2)^3}$$

$$= \frac{2x^2 - 8x + 8 - 2x^2 + 8x}{(x-2)^3}$$

$$= \frac{8}{(\chi-2)^3}$$