Implicit Differentiation

Up to this point, the functions that we have worked with have all been expressed in an explicit form. A function is in an explicit form if it is written in the format of $y=f(x)$. In words, a function is in an explicit form if y is isolated on one side of the equal sign by itself with everything else that does not involve y on the other side.

Example 1: The function $y=3 x+4$ is in explicit form. Find $y^{\prime}=\frac{d y}{d x}$.

When a function is not written in explicit form, we say it is in implicit form (independent and dependent variables, x and y, can be on the same side of the equation).
 since y is a function of $x(y=f(x))$, when we take the derivative of y with respect to x, its derivative is $y^{\prime}=\frac{d y}{d x}$, not $\mathbf{1}$.

Why is the derivative of y, with respect to $x, y^{\prime}=\frac{d y}{d x}$ and not $1 ?$

Since $y=f(x)$, the derivative of y depends on what $f(x)$ is. For example, if $y=x$, then $y^{\prime}=\frac{d y}{d x}=1$. However, if $y=x^{2}$, then $y^{\prime}=\frac{d y}{d x}=2 x \neq 1$. If we are given a function in implicit form, we can't always put it in explicit form (solve for y). If we can't solve for y, then we don't know explicitly what $f(x)$ is and so we can't determine what $f^{\prime}(x)$ is explicitly. So, if we can't explicitly solve for y (this is why we need implicit differentiation), we symbolically write that the derivative of y, with respect to x is $y^{\prime}=\frac{d y}{d x}$.

Why is the derivative of x, with respect to $x, 1$?

We have seen, that $\frac{d}{d x}(x)=1$. Notice that, as a fraction, $\frac{d}{d x}(x)=\frac{d x}{d x}=1$.

How I Like to Think About It:

Whenever I have to take the derivative of something involving y, implicitly, I think to myself: what would the derivative be if y was the dependent variable, and then remember to multiply that by $y^{\prime}=\frac{d y}{d x}$.

Example 2: Find $y^{\prime}=\frac{d y}{d x}$ given that $3 y^{2}+2 x y=4 x+3$.

Notice that we need the chain rule to take the derivative of $3 y^{2}$ and the product rule to take the derivative of $2 x y$. Again, this is because $y=f(x)$, and $f(x)$ could be something more complicated than just x.

Example 3: Find $y^{\prime}=\frac{d y}{d x}$ given that

$$
3 \sin \left(\frac{y}{x}\right)=7 x
$$

DIY

1. Find the equation of the tangent line to $2 x^{4}=3 y^{2}-y$ at the point $(1,1)$.
2. Find $y^{\prime}=\frac{d y}{d x}$ given that $e^{5 x y}=2 y+1$.
