Increasing/Decreasing Functions

A function is increasing if $x>y$ implies $f(x)>f(y)$ (the function gets bigger as you move from left to right).

A function is decreasing if $x>y$ implies $f(x)<f(y)$ (the function gets smaller as you move from left to right).

Fact: If $f^{\prime}(x)>0$, then $f(x)$ is increasing. If $f^{\prime}(x)<0$, then $f(x)$ is decreasing.

Example 1: Find the intervals on which $f(x)=2 x^{3}+9 x^{2}+12 x$ is increasing and the intervals on which it is decreasing.

The First Derivative Test

Last time we saw that relative extrema of a function can occur at points where the derivative of the function is equal to zero.

The First Derivative Test

Let c be a critical number of $f(x)$.

1. If $f^{\prime}(x)>0$ to the left of c and $f^{\prime}(x)<0$ to the right of c, then f has a relative maximum at c.

2. If $f^{\prime}(x)<0$ to the left of c and $f^{\prime}(x)>0$ to the right of c, then f has a relative minimum at c.

3. If $f^{\prime}(x)>0$ on both sides of c, then f has neither a relative maximum or minimum at c.

4. If $f^{\prime}(x)<0$ on both sides of c, then f has neither a relative maximum or minimum at c.

Example 2: Find the intervals on which $f(x)=2 x^{4}-3 x^{3}$ is increasing, the intervals on which it is decreasing, and any relative extrema.

Example 3: If $g^{\prime}(x)=e^{4 x}\left(x^{2}-10\right)$, find the intervals on which $g(x)$ is increasing, the intervals on which it is decreasing, and the x-values at which it has relative extrema.

DIY

1. The critical numbers of $f(x)=\sin (x)$ on the interval of $(0,2 \pi)$ are $x=\frac{\pi}{2}$ and $x=\frac{3 \pi}{2}$. Identify the x-values on $(0,2 \pi)$ at which $f(x)$ has a relative minimum.
