Finding Limits Numerically

The limit of a function is the value a function approaches as x approaches a particular value. If $f(x)$ approaches L as x approaches c, we say the limit of $f(x)$ as x approaches c is L, and we write $\lim _{x \rightarrow c} f(x)=L$. Think: As the x-values get closer to c, the y-values $(y=f(x))$ get closer to L.

Example 1: If $f(x)=x$ and $c=3$, find $\lim _{x \rightarrow c} f(x)$.

Limits Come in Four Flavors

1. L : a finite value
2. ∞ : The function gets bigger and bigger as x approaches c.
3. $-\infty$: The function gets smaller and smaller as x approaches c.
4. Does Not Exist (DNE): The function doesn't approach a specific value as x approaches c.

We can estimate the limit of a function by evaluating the function at numbers close to c.
Example 2: Find the following limit numerically.

$\lim _{x \rightarrow 0} \frac{6 x}{x^{2}+3 x}=$							
x	-0.01	-0.001	-0.0001	0	0.0001	0.001	0.01
$f(x)$				-			

Notice that $f(x)$ need not be defined at the point c in order to find the limit!

Example 3: Find the following limit numerically.

$$
\lim _{x \rightarrow-3} \frac{7}{(x+3)^{2}}=
$$

x	-3.01	-3.001	-3.0001	-3	-2.9999	-2.999	-2.99
$f(x)$				-			

One-Sided Limits

- Left-Sided Limit: $\lim _{x \rightarrow c^{-}} f(x)$; Only look at values of x that are less than (to the left of) c.
- Right-Sided Limit: $\lim _{x \rightarrow c^{+}} f(x)$; Only look at values of x that are greater than (to the right of) c.

Be careful to notice the difference between limits at negative numbers and left-sided limits. $\lim _{x \rightarrow-c} f(x)$ is generally not the same as $\lim _{x \rightarrow c^{-}} f(x)$.

Example 4: Find the following limits numerically.

$$
\lim _{x \rightarrow 2^{-}} \frac{3}{x-2}=\quad \lim _{x \rightarrow 2^{+}} \frac{3}{x-2}=\quad \lim _{x \rightarrow 2} \frac{3}{x-2}=
$$

x	1.99	1.999	1.9999	2	2.0001	2.001	2.01
$f(x)$				-			

If you are only asked to find one of the one-sided limits, you only need to create the appropriate half of the chart.

Example 5: Find the following limits numerically.

$$
\lim _{x \rightarrow 0^{-}} f(x)=\quad \lim _{x \rightarrow 0^{+}} f(x)=\quad \lim _{x \rightarrow 0} f(x)=
$$

where

$$
f(x)= \begin{cases}3 \sin (x) & x<0 \\ 2 x & x \geq 0\end{cases}
$$

x	-0.01	-0.001	-0.0001	0	0.0001	0.001	0.01
$f(x)$				-			

Fact

$\lim _{x \rightarrow c} f(x)=L$ if and only if $\lim _{x \rightarrow c^{-}} f(x)=\lim _{x \rightarrow c^{+}} f(x)=L$.

* Here we allow $L= \pm \infty$.

Finding Limits Graphically

We can also determine the limit of a function by looking at its graph.

Example 2 Revisited:

$$
\lim _{x \rightarrow 0} \frac{6 x}{x^{2}+3 x}=2
$$

Example 3 Revisited:

$$
\lim _{x \rightarrow-3} \frac{7}{(x+3)^{2}}=\infty
$$

Example 4 Revisited:

$$
\lim _{x \rightarrow 2} \frac{3}{x-2}=\mathrm{DNE}
$$

Example 6: Find the following limits and function values graphically.

$$
\begin{array}{rlrl}
\lim _{t \rightarrow 2^{-}} f(t) & = & \lim _{t \rightarrow 4^{-}} f(t) & = \\
\lim _{t \rightarrow 2^{+}} f(t) & = & \lim _{t \rightarrow 4^{+}} f(t)= \\
\lim _{t \rightarrow 2} f(t) & = & \lim _{t \rightarrow 4} f(t) & = \\
f(2) & = & f(4) & =
\end{array}
$$

Example 7: Find the following limits and function values graphically.

$$
\begin{aligned}
& \lim _{x \rightarrow-3^{-}} f(x)=\quad \lim _{x \rightarrow 2^{-}} f(x)=\quad \lim _{x \rightarrow 5^{-}} f(x)= \\
& \lim _{x \rightarrow-3^{+}} f(x)=\quad \lim _{x \rightarrow 2^{+}} f(x)=\quad \lim _{x \rightarrow 5^{+}} f(x)= \\
& \lim _{x \rightarrow-3} f(x)=\quad \lim _{x \rightarrow 2} f(x)=\quad \lim _{x \rightarrow 5} f(x)= \\
& f(-3)=\quad f(2)=\quad f(5)=
\end{aligned}
$$

				T			${ }^{\prime}$ ¢								
				,								,			
												\checkmark			
							,				1				
			-3	3			0			2			5		x
									-	/					
			\checkmark							-					
										\|					

DIY

1. Find the following limits and function values graphically.

$$
\begin{array}{rlrl}
\lim _{x \rightarrow-2^{-}} f(x) & = & \lim _{x \rightarrow 1^{-}} f(x) & = \\
\lim _{x \rightarrow-2^{+}} f(x) & = & \lim _{x \rightarrow 1^{+}} f(x)= \\
\lim _{x \rightarrow-2} f(x) & = & \lim _{x \rightarrow 1} f(x)= \\
f(-2) & = & f(1) & =
\end{array}
$$

