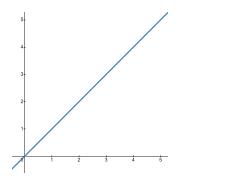
Finding Limits Numerically

The *limit* of a function is the value a function approaches as x approaches a particular value. If f(x) approaches L as x approaches c, we say the limit of f(x) as x approaches c is L, and we write $\lim_{x\to c} f(x) = L$. Think: As the x-values get closer to c, the y-values (y = f(x))get closer to L.

Example 1: If f(x) = x and c = 3, find $\lim_{x\to c} f(x)$.



Limits Come in Four Flavors

- 1. L: a finite value
- 2. ∞ : The function gets bigger and bigger as x approaches c.
- 3. $-\infty$: The function gets smaller and smaller as x approaches c.
- 4. Does Not Exist (DNE): The function doesn't approach a specific value as x approaches c.

We can estimate the limit of a function by evaluating the function at numbers close to c.

Example 2: Find the following limit numerically.

 $\lim_{x\to 0} \frac{6x}{x^2 + 3x} =$

ſ	~	0.01	0.001	0.0001	0	0.0001	0.001	0.01
	x	-0.01	-0.001	-0.0001	0	0.0001	0.001	0.01
	f(x)				—			

Notice that f(x) need not be defined at the point c in order to find the limit!

Example 3: Find the following limit numerically.

$$\lim_{x \to -3} \frac{7}{(x+3)^2} =$$

x	-3.01	-3.001	-3.0001	-3	-2.9999	-2.999	-2.99
f(x)				_			

One-Sided Limits

- Left-Sided Limit: $\lim_{x\to c^-} f(x)$; Only look at values of x that are less than (to the left of) c.
- Right-Sided Limit: $\lim_{x\to c^+} f(x)$; Only look at values of x that are greater than (to the right of) c.

Be careful to notice the difference between limits at negative numbers and left-sided limits. $\lim_{x\to -c} f(x)$ is generally not the same as $\lim_{x\to c^-} f(x)$.

Example 4: Find the following limits numerically.

$\lim_{x \to 2^-} \frac{3}{x-2} =$			$\lim_{x \to 2^+} \frac{3}{x-2} =$			$\lim_{x \to 2} \frac{3}{x-2} =$	
x	1.99	1.999	1.9999	2	2.0001	2.001	2.01
f(x)				—			

If you are only asked to find one of the one-sided limits, you only need to create the appropriate half of the chart.

Example 5: Find the following limits numerically.

 $\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x) = \lim_{x \to 0} f(x) =$

where

$$f(x) = \begin{cases} 3\sin(x) & x < 0\\ 2x & x \ge 0 \end{cases}$$

x	-0.01	-0.001	-0.0001	0	0.0001	0.001	0.01
f(x)				—			

Fact

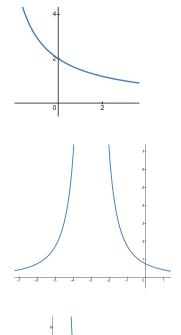
 $\lim_{x\to c} f(x) = L \text{ if and only if } \lim_{x\to c^-} f(x) = \lim_{x\to c^+} f(x) = L.$ * Here we allow $L = \pm \infty$.

Finding Limits Graphically

We can also determine the limit of a function by looking at its graph.

Example 2 Revisited:

$$\lim_{x \to 0} \frac{6x}{x^2 + 3x} = 2$$



ż

Example 3 Revisited:

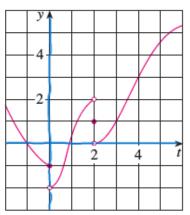
$$\lim_{x \to -3} \frac{7}{(x+3)^2} = \infty$$

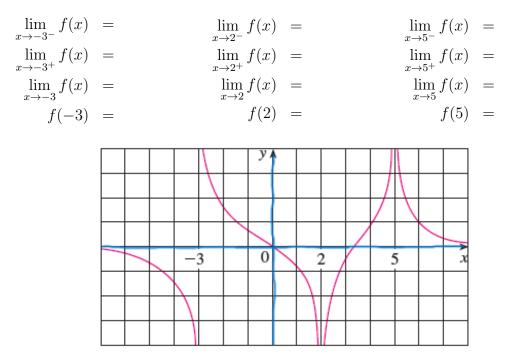
Example 4 Revisited:

$$\lim_{x \to 2} \frac{3}{x - 2} = \text{DNE}$$

Example 6: Find the following limits and function values graphically.

$\lim_{t \to 2^-} f(t)$	=	$\lim_{t\to 4^-} f(t)$	=
$\lim_{t \to 2^+} f(t)$	=	$\lim_{t \to 4^+} f(t)$	
$\lim_{t \to 2} f(t)$	=	$\lim_{t\to 4} f(t)$	=
f(2)	=	f(4)	=





Example 7: Find the following limits and function values graphically.

DIY

1. Find the following limits and function values graphically.

$$\lim_{x \to -2^{-}} f(x) = \lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} f(x) = \lim_{x \to 1} f(x) = f(-2) = f(1) = f(1) = 0$$

