Graphical Interpretation of Derivatives

Example 1: The graph of $f^{\prime}(x)$ is given below. Find the critical numbers for $f(x)$, the intervals on which f is increasing, decreasing, concave up, concave down, the x-values at which f has relative extrema, and the x-values at which f has inflection points.

Example 2: The graph of $f^{\prime}(x)$ is given below. Find the critical numbers for $f(x)$, the intervals on which f is increasing, decreasing, concave up, concave down, the x-values at which f has relative extrema, and the x-values at which f has inflection points.

Example 3: The graph of $f^{\prime}(x)$ is given below. Find the critical numbers for $f(x)$, the intervals on which f is increasing, decreasing, concave up, concave down, the x-values at which f has relative extrema, and the x-values at which f has inflection points.

DIY

The graph of $f^{\prime}(x)$ is given below. Find the critical numbers for $f(x)$, the intervals on which f is increasing, decreasing, concave up, concave down, the x-values at which f has relative extrema, and the x-values at which f has inflection points.

