Graphical Interpretation of Derivatives

Example 1: The graph of f'(x) is given below. Find the critical numbers for f(x), the intervals on which f is increasing, decreasing, concave up, concave down, the x-values at which f has relative extrema, and the x-values at which f has inflection points.

$$mm: x=-2$$

Example 2: The graph of f'(x) is given below. Find the critical numbers for f(x), the intervals on which f is increasing, decreasing, concave up, concave down, the x-values at which f has relative extrema, and the x-values at which f has inflection points.

Critical #s:
$$X = \pm 3$$

Inc: $(-3,3)$

Dec: $(-\omega,-3)$, $(3,\omega)$

Max at $x=3$

Min at $x=-3$

Cu! $(-\omega,0)$

CD: $(0,\omega)$

T.p. at $x=0$

Example 3: The graph of f'(x) is given below. Find the critical numbers for f(x), the intervals on which f is increasing, decreasing, concave up, concave down, the x-values at which f has relative extrema, and the x-values at which f has inflection points.

Critical #s:
$$X = -5, 0, 5$$

Incl $(-\omega, -5)$, $(0, 5)$
Decl $(-5, 0)$, $(5, \omega)$
Max at $X = -5$ and $X = 5$
Min at $X = 0$
 $CU!$ $(-3, 3)$
 $CD!$ $(-\omega, -3)$, $(3, \omega)$
 $T.P.$ at $X = -3$ and $X = 3$

DIY

The graph of f'(x) is given below. Find the critical numbers for f(x), the intervals on which f is increasing, decreasing, concave up, concave down, the x-values at which f has relative extrema, and the x-values at which f has inflection points.

