Limits at Infinity

So far we have found limits of the form $\lim _{x \rightarrow c} f(x)$ where c is a finite number. Now we will look at limits of the form $\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow-\infty} f(x)$. So, we want to know what the function does as x gets bigger and bigger (goes off to infinity) and what happens to the function as x gets smaller and smaller (goes off to negative infinity).

Example 1: Find the following limits.

$$
\lim _{x \rightarrow \infty} \frac{12}{x} \quad \text { and } \quad \lim _{x \rightarrow-\infty} \frac{12}{x}
$$

Example 2: Find the following limits.

$$
\lim _{x \rightarrow \infty} 3 x^{3} \quad \text { and } \quad \lim _{x \rightarrow-\infty} 3 x^{3}
$$

Example 3: Find the following limit.

$$
\lim _{x \rightarrow \infty} \frac{3}{x}-\frac{x}{2}
$$

Fact: Finding the limit of a rational function at $\pm \infty$ is the same as taking the limit of the ratio of its leading terms (the terms with the highest power of x in the numerator and denominator).

Example 4: Find the following limit.

$$
\lim _{x \rightarrow \infty} \frac{3 x^{2}+2}{x^{2}+2 x}
$$

Vertical Asymptotes

Recall from lesson 4 that a function $f(x)$ has a vertical asymptote at $x=c$ if $\lim _{x \rightarrow c} f(x)$ is either a Case II limit or a Case III limit that becomes a Case II limit after we use algebra to simplify $f(x)$. In other words, $\lim _{x \rightarrow c^{-}} f(x)= \pm \infty$ and/or $\lim _{x \rightarrow c^{+}} f(x)= \pm \infty$. Remember that, for rational functions, we only need to check the values for x that make the denominator zero when looking for vertical asymptotes.

Horizontal Asymptotes

The horizontal line $y=L$, where L is finite, is a horizontal asymptote for $f(x)$ if $\lim _{x \rightarrow \infty} f(x)=L$ or $\lim _{x \rightarrow-\infty} f(x)=L$.

Example 5: Find any horizontal asymptotes for the following functions.

$$
f(x)=x^{2}+1 \quad \text { and } \quad g(x)=\frac{2 x^{3}+1}{x^{4}}
$$

Slant Asymptotes

A slant asymptote is an asymptote for a function $f(x)$ which is not vertical nor horizontal; it is a lime of the form $y=m x+b$, where m and b are constants.

We use polynomial long division to find slant asymptotes. The quotient (the answer ignoring any remainder) is the slant asymptote.
Fact: A rational function will have a slant asymptote only when the degree of the numerator is one higher than the degree of the denominator.

Example 6: Find the slant asymptote for the following function.

$$
f(x)=\frac{x^{3}+2 x^{2}+1}{x^{2}+1}
$$

DIY

1. Find any vertical, horizontal, and slant asymptotes for the following function.

$$
h(x)=\frac{-2 x^{2}}{x^{2}-9}
$$

