MA 16010 Lesson 21

Limits at Infinity

So far we have found limits of the form lim,_,. f(z) where c is a finite number. Now we
will look at limits of the form lim,_,, f(z) and lim,_,_o f(z). So, we want to know what
the function does as z gets bigger and bigger (goes off to infinity) and what happens to the
function as z gets smaller and smaller (goes off to negative infinity).

Example 1: Find the following limits.

limB‘:O and lim = =0
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Fact: Finding the limit of a rational function at +oo is the same as taking the limit of

the ratio of its leading terms (the terms with the highest power of z in the numerator and

denominator). e /
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Example 4: Find the following limit.
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Vertical Asymptotes

Recall from lesson 4 that a function f(z) has a vertical asymptote at x = c if lim, . f(x) is
either a Case II limit or a Case III limit that becomes a Case II limit after we use algebra to
simplify f(z). In other words, lim,_.- f(z) = *o00 and/or lim,_,.+ f(z) = £oco. Remember
that, for rational functions, we only need to check the values for z that make the denominator
zero when looking for vertical asymptotes.
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Horizontal Asymptotes

The horizontal line y = L, where L is finite, is a horizontal asymptote for f(z) if
limg 00 f(z) = L or limy,_o f(z) = L.
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Example 5: Find any horizontal asymptotes for the following functions.

flz)=2*+1 and g(z) = 2$1:- !
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Slant Asymptotes (30) e onl\( H.A. 1S ‘Y :Cﬂ

A slant asymptote is an asymptote for a function f(x) which is not vertical nor horizontal,
it is a lime of the form y = mz + b, where m and b are constants.

We use polynomial long division to find slant asymptotes. The quotient (the answer ignoring
‘any remainder) is the slant asymptote.

| Fact: A rational function will have a slant asymptote only when the degree of the numerator !
|is one higher than the degree of the denominator. \
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Example 6: Find the slant asymptote for the following function.
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1. Find any vertical, horizontal, and slant asymptotes for the following function.
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