Area and Riemann Sums

Sigma Notation

The sigma symbol, \sum, means to add (sum) things up.

Example 1: Evaluate the following sum.

$$
\sum_{i=1}^{4}(2 i+3)
$$

Example 2: Rewrite the following sum using sigma notation.

$$
\sqrt{3-2}+\sqrt{4-2}+\sqrt{5-2}+\sqrt{6-2}+\cdots+\sqrt{n-2}
$$

Area and Riemann Sums

Left and Right Riemann Sums use rectangles to estimate the area between a curve and the x-axis. If we want to use Riemann sums to approximate the area between a curve and the x-axis on the interval $[a, b]$ with n rectangles, then we partition the x-axis between a and b into n subintervals of width $\Delta x=\frac{b-a}{n}$. When using the Left Riemann Sum, L_{n}, we create rectangles from the left endpoint of each subinterval. When using the Right Riemann Sum, R_{n}, we create rectangles from the right endpoint of each subinterval. Examples using 4 rectangles are pictured below.

Left Riemann Sum (form rectangles at the left endpoints)

$$
L_{4}=\sum_{i=0}^{3} f\left(x_{i}\right) \Delta x
$$

Right Riemann Sum (form rectangles at the right endpoints)

$$
R_{4}=\sum_{i=1}^{4} f\left(x_{i}\right) \Delta x
$$

Example 3: Use the left and right Riemann sums with 3 rectangles to estimate the (signed) area under the curve of $y=2 x^{3}$ on the interval $[0,6]$.

General Riemann Sum Formulas

In general, the formulas for the left and right Riemann sums for $f(x)$ on $[a, b]$ using n rectangles are:

$$
L_{n}=\sum_{i=0}^{n-1} f(i \Delta x+a) \Delta x
$$

and

$$
R_{n}=\sum_{i=1}^{n} f(i \Delta x+a) \Delta x
$$

Example 4: Use the left and right Riemann sums with 90 rectangles to estimate the signed area under the curve of $y=2 x^{5}+3$ on the interval [10, 20].

DIY

1. Evaluate the following sum.

$$
\sum_{i=2}^{5}\left(i^{2}+1\right)
$$

2. Use sigma notation to rewrite the following sum.

$$
\left(2(0)^{5}+1\right)+\left(2(1)^{5}+1\right)+\left(2(2)^{5}+1\right)+\cdots+\left(2(n)^{5}+1\right)
$$

