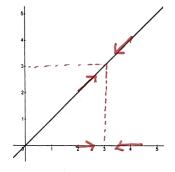
MA 16010 Lesson 2

Finding Limits Numerically

The *limit* of a function is the value a function approaches as x approaches a particular value. If f(x) approaches L as x approaches c, we say the limit of f(x) as x approaches c is L, and we write $\lim_{x\to c} f(x) = L$. Think: As the x-values get closer to c, the y-values (y = f(x)) get closer to L.

Example 1: If f(x) = x and c = 3, find $\lim_{x \to c} f(x)$.



$$\lim_{\chi \to 3} \chi = 3$$

Limits Come in Four Flavors

- 1. L: a finite value
- 2. ∞ : The function gets bigger and bigger as x approaches c.
- 3. $-\infty$: The function gets smaller and smaller as x approaches c.
- 4. Does Not Exist (DNE): The function doesn't approach a specific value as x approaches c.

We can estimate the limit of a function by evaluating the function at numbers close to c.

Example 2: Find the following limit numerically.

$$\lim_{x \to 0} \frac{6x}{x^2 + 3x} = 2$$

f(x)	7 00/17	2 0007	2 0001	_	1 00001	1.9993	1 9924
r	-0.01	-0.001	-0.0001	0	0.0001	0.001	0.01

Notice that f(x) need not be defined at the point c in order to find the limit!

Example 3: Find the following limit numerically.

$$\lim_{x \to -3} \frac{7}{(x+3)^2} = \mathcal{D}$$

x	-3.01	-3.001	-3.0001	-3	-2.9999	-2.999	-2.99
f(x)	70,000	7,000,000	700,000,000	_	700,000,000	7,000,000	70,000

MA 16010 Lesson 2

One-Sided Limits

• <u>Left-Sided Limit:</u> $\lim_{x\to c^-} f(x)$; Only look at values of x that are less than (to the left of) c.

• Right-Sided Limit: $\lim_{x\to c^+} f(x)$; Only look at values of x that are greater than (to the right of) c.

Be careful to notice the difference between limits at negative numbers and left-sided limits. $\lim_{x\to -c} f(x)$ is generally not the same as $\lim_{x\to c^-} f(x)$.

Example 4: Find the following limits numerically.

$$\lim_{x \to 2^{-}} \frac{3}{x - 2} = - \mathcal{V} \qquad \lim_{x \to 2^{+}} \frac{3}{x - 2} = \mathcal{V} \qquad \lim_{x \to 2} \frac{3}{x - 2} = DNE$$

x	1.99	1.999	1.9999	2	2.0001	2.001	2.01
f(x)	- 300	-3,000	-30,000	_	30,000	3,000	300

If you are only asked to find one of the one-sided limits, you only need to create the appropriate half of the chart.

Example 5: Find the following limits numerically.

$$\lim_{x \to 0^{-}} f(x) = \bigcap \qquad \qquad \lim_{x \to 0^{+}} f(x) = \bigcap \qquad \qquad \lim_{x \to 0} f(x) = \bigcap$$

where

$$f(x) = \begin{cases} 3\sin(x) & x < 0 \\ 2x & x \ge 0 \end{cases}$$

Make sure your calculator is in radians when working with trig functions in this course.

x	-0.01	-0.001	-0.0001	0	0.0001	0.001	0.01
f(x)	-0.0300	-0.0030	-0,0003	_	0.0002	0.002	0.02

Fact

 $\lim_{x\to c} f(x) = L \text{ if and only if } \lim_{x\to c^-} f(x) = \lim_{x\to c^+} f(x) = L.$

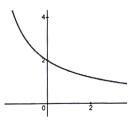
* Here we allow $L = \pm \infty$.

Finding Limits Graphically

We can also determine the limit of a function by looking at its graph.

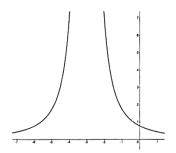
Example 2 Revisited:

$$\lim_{x \to 0} \frac{6x}{x^2 + 3x} = 2$$



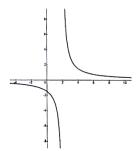
Example 3 Revisited:

$$\lim_{x \to -3} \frac{7}{(x+3)^2} = \infty$$



Example 4 Revisited:

$$\lim_{x \to 2} \frac{3}{x - 2} = \text{DNE}$$



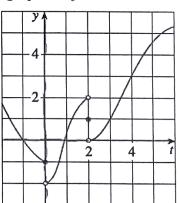
Example 6: Find the following limits and function values graphically.

$$\lim_{t \to 2^{-}} f(t) = 2 \qquad \qquad \lim_{t \to 4^{-}} f(t) = 3$$

$$\lim_{t \to 2^{+}} f(t) = 0 \qquad \qquad \lim_{t \to 4^{+}} f(t) = 3$$

$$\lim_{t \to 2} f(t) = 0 \text{ NE} \qquad \qquad \lim_{t \to 4} f(t) = 3$$

$$f(2) = 1 \qquad \qquad f(4) = 3$$



Example 7: Find the following limits and function values graphically.

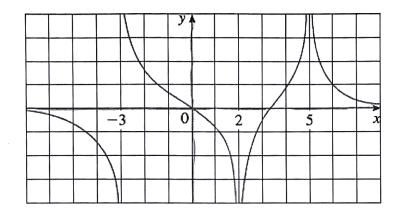
$$\lim_{x \to -3^-} f(x) = -\mathcal{W} \qquad \lim_{x \to 2^-} f(x) = -\mathcal{W} \qquad \lim_{x \to 5^-} f(x) = \mathcal{W}$$

$$\lim_{x \to -3^+} f(x) = \mathcal{W} \qquad \lim_{x \to 2^+} f(x) = -\mathcal{W} \qquad \lim_{x \to 5^+} f(x) = \mathcal{W}$$

$$\lim_{x \to -3} f(x) = \text{DNE} \qquad \lim_{x \to 2} f(x) = -\mathcal{W} \qquad \lim_{x \to 5^+} f(x) = \mathcal{W}$$

$$\lim_{x \to 3^+} f(x) = \text{DNE} \qquad \lim_{x \to 2^+} f(x) = -\mathcal{W} \qquad \lim_{x \to 5^+} f(x) = \mathcal{W}$$

$$f(-3) = \text{Undefined} \qquad f(2) = \text{Undefined} \qquad f(5) = \text{Undefined}$$



DIY

1. Find the following limits and function values graphically.

$$\lim_{x \to -2^{-}} f(x) = 1 \qquad \lim_{x \to 1^{-}} f(x) = 1$$

$$\lim_{x \to -2^{+}} f(x) = 1 \qquad \lim_{x \to 1^{+}} f(x) = 2$$

$$\lim_{x \to -2} f(x) = 1 \qquad \lim_{x \to 1} f(x) = DNE$$

$$f(-2) = 1 \qquad f(1) = -2$$

