Finding Limits Analytically

We will examine three different cases.
When asked to find $\lim _{x \rightarrow c} f(x)$ analytically, always look at $f(c)$ first!

Case I

$f(c)=$ a number (even 0 is okay). That number is the answer to the limit.

Example 1: Evaluate the following limit analytically.

$$
\lim _{x \rightarrow 8}(3 x-12)
$$

Case II

$f(c)=\frac{\text { nonzero number }}{0}$. Case II tells us that $f(x)$ has a vertical asymptote at $x=c$. At a vertical asymptote, the value of the limit can be $+\infty,-\infty$, or DNE. We have to check right an left hand limits to decide which it is.

Example 2: Evaluate the following limit analytically.

$$
\lim _{x \rightarrow-3} \frac{7}{(x+3)^{2}}
$$

Example 3: Evaluate the following limit analytically.

$$
\lim _{x \rightarrow 2} \frac{3}{x-2}
$$

Case III

$f(c)=\frac{0}{0}$. In this case we need to do some algebra on $f(x)$ to end up with a "new" limit that falls into Case I or Case II.

Example 4: Evaluate the following limit analytically.

$$
\lim _{x \rightarrow 0} \frac{x^{2}-4 x}{x^{2}+2 x}
$$

Example 5: Evaluate the following limit analytically.

$$
\lim _{x \rightarrow 1} \frac{x^{2}-x}{(x-1)^{2}}
$$

We can also find limits of piecewise functions analytically.
Example 6: Evaluate the following limits analytically, where

$$
f(x)= \begin{cases}3 x^{2}+2, & x \leq 0 \\ 8 x+2, & 0<x<1 \\ -8 x+2, & x \geq 1\end{cases}
$$

$$
\begin{aligned}
\lim _{x \rightarrow 0^{-}} f(x) & = & \lim _{x \rightarrow 1^{-}} f(x) & = \\
\lim _{x \rightarrow 0^{+}} f(x) & = & \lim _{x \rightarrow 1^{+}} f(x) & = \\
\lim _{x \rightarrow 0} f(x) & = & \lim _{x \rightarrow 1} f(x) & =
\end{aligned}
$$

Properties of Limits

Let c, k, L, and K be real numbers and n a positive integer. If $\lim _{x \rightarrow c} f(x)=L$ and $\lim _{x \rightarrow c} g(x)=K$, then we have the following.

- $\lim _{x \rightarrow c}[k f(x)]=k L$
- $\lim _{x \rightarrow c}[f(x) \pm g(x)]=L \pm K$
- $\lim _{x \rightarrow c}[f(x) g(x)]=L K$
- $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{L}{K}$, assuming $K \neq 0$
- $\lim _{x \rightarrow c}[f(x)]^{n}=L^{n}$

DIY

1. Find the following limit analytically.

$$
\lim _{x \rightarrow 0} \frac{x^{3}+2 x^{2}}{x^{2}-3 x}
$$

2. Find the following limit analytically.

$$
\lim _{x \rightarrow 0} \frac{x^{2}-3 x+2}{x^{2}+3 x+2}
$$

3. Find the following limit analytically.

$$
\lim _{x \rightarrow 6} \frac{-1}{x-6}
$$

