The Fundamental Theorem of Calculus I

Suppose $f(x)$ is continuous on the interval $[a, b]$. If $F(x)$ is any antiderivative of $f(x)$ (so $\left.F^{\prime}(x)=f(x)\right)$, then $\int_{a}^{b} f(x) d x=F(b)-F(a)$.

What do we mean by any antiderivative? We can choose any value for C that we want (we tend to choose zero, since it's the easiest to deal with).

Example 1: Compute the following integral.

$$
\int_{1}^{2}\left(2 x+x^{2}\right) d x
$$

Example 2: Compute the following integral.

$$
\int_{0}^{2}\left(3 e^{x}+2\right) d x
$$

Example 3: Compute the following integral.

$$
\int_{0}^{\frac{\pi}{4}}\left(2 \sec ^{2}(x)-3\right) d x
$$

 $y=0, x=0$, and $x=8$.

DIY

1. Compute the following integral.

$$
\int_{1}^{9} \frac{x^{2}+x^{3}}{\sqrt{x}} d x
$$

2. Find the area enclosed by the graphs of the following equations. $y=x^{2}+4, y=0$, $x=1$, and $x=2$.
