Continuity

A function is continuous if it has no discontinuities. Think: we can draw the graph of the function without ever lifting our pen.

Types of Discontinuities (at a point c)

- Vertical Asymptote: A function $f(x)$ will have a vertical asympotote at $x=c$ if $\lim _{x \rightarrow c} f(x)$ is either a Case II limit or a Case III limit that becomes a Case II limit after we use algebra to simplify $f(x)$. In other words, $\lim _{x \rightarrow c^{-}} f(x)= \pm \infty$ and/or $\lim _{x \rightarrow c^{+}} f(x)= \pm \infty$.

- Hole: A function $f(x)$ will have a hole at $x=c$ if the left- and right-sided limits at c are both finite and equal (so the two-sided limit exists and is finite), but this limit value is not equal to the function value at $c(f(c)$ may even be undefined).
Symbolically, $\lim _{x \rightarrow c^{-}} f(x)=\lim _{x \rightarrow c^{+}} f(x)=\lim _{x \rightarrow c} f(x)=L<\infty$, but $f(c) \neq L$ ($f(c)$ could even be undefined).
Holes can show up as the Case III limits that turn into Case I limits after we use algebra to simplify $f(x)$.

- Jump: The left- and right-sided limits of $f(x)$ at c are both finite, but not equal. Symbolically, $\lim _{x \rightarrow c^{-}} f(x)=L, \lim _{x \rightarrow c^{+}} f(x)=M$, with $L, M<\infty$ and $L \neq M$.

Example 1: Classify the discontinuities in the following graph.

Continuity and Limits

A function $f(x)$ is continuous at the point $x=c$ if and only if $\lim _{x \rightarrow c} f(x)$ exists and is finite, $f(c)$ is defined, and $\lim _{x \rightarrow c} f(x)=f(c)$. Symbolically,

$$
\lim _{x \rightarrow c^{-}} f(x)=\lim _{x \rightarrow c^{+}} f(x)=f(c)
$$

where all the above limits and function value are finite.

Where to Check for Discontinuities

- Polynomials are continuous everywhere (for any value of x), so they have no discontinuities.
- Root Functions (square root, cubed root, etc.) are continuous on their domains.
- Rational Functions (a polynomial divided by a polynomial) only have discontinuities where their denominators are zero. They are continuous everywhere else.
- Piecewise Functions: As long as each "piece" of a piecewise function is continuous, we only need to check the x-values where the function changes definition (switches from one piece to another).

Example 2: Classify the discontinuities, if any, of the following function.

$$
f(x)=\frac{x^{2}-7 x}{x^{2}+3 x}
$$

Example 3: Classify the discontinuities, if any, of the following function.

$$
g(x)=x^{25}-4 x^{17}+56 x+8
$$

Example 4: Classify the discontinuities, if any, of the following function.

$$
f(x)= \begin{cases}2 x+6, & x \neq 2 \\ 4, & x=2\end{cases}
$$

Example 5: Classify the discontinuities, if any, of the following function.

$$
f(x)= \begin{cases}8 x^{2}+4, & x \leq 0 \\ 3 x+4, & 0<x<1 \\ 2 x+9, & x \geq 1\end{cases}
$$

DIY

1. Classify the discontinuities, if any, of the following function.

$$
g(x)=\frac{x^{2}-11 x+18}{x^{2}-6 x+8}
$$

2. Classify the discontinuities, if any, of the following function.

$$
h(x)= \begin{cases}x-6, & x<8 \\ \sqrt[3]{x}, & x \geq 8\end{cases}
$$

