MA 16010 Lesson 4

Continuity

A function is continuous if it has no discontinuities. Think: we can draw the graph of the
function without ever lifting our pen.

Types of Discontinuities (at a point c)

o Vertical Asymptote: A function f(z) will have a vertical asympotote at = = c if
lim, . f(z) is either a Case II limit or a Case III limit that becomes a Case II limit
after we use algebra to simplify f(z). In other words, lim,_,. f(z) = Zoo and/or
lim, .+ f(z) = £oo.
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e Hole: A function f(z) will have a hole at = c if the left- and right-sided limits at
c are both finite and equal (so the two-sided limit exists and is finite), but this limit
value is not equal to the function value at ¢ (f(c) may even be undefined).
Symbolically, lim,,.- f(z) = lim, .+ f(z) = lim, . f(z) = L < oo, but f(c) # L
(f(c) could even be undefined).

Holes can show up as the Cﬁe III limits that turn into Case I limits after we use
algebra to simplify f(z).

c C

e Jump: The left- and right-sided limits of f(z) at c are both finite, but not equal.
Symbolically, lim,_,.- f(z) = L, lim,_,.+ f(z) = M, with L, M < oo and L # M.
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Example 1: Classify the discontinuities in the following graph.
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Continuity and Limits

A function f(z) is continuous at the point « = ¢ if and only if lim,_,. f(z) exists and is finite,
f(c) is defined, and lim,_,. f(z) = f(c). Symbolically,

lim f(z)= lim f(z) = f(C),

x—c” a—=et T

where all the above limits and function value are finite.

Where to Check for Discontinuities

e Polynomials are continuous everywhere (for any value of ), so they have no disconti-
nuities.

e Root Functions (square root, cubed root, etc.) are continuous on their domains.

e Rational Functions (a polynomial divided by a polynomial) only have discontinuities
where their denominators are zero. They are continuous everywhere else.

e Piccewise Functions: As long as each “piece” of a piecewise function is continuous, we
only need to check the z-values where the function changes definition (switches from
one piece to another).
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Example 2: Classify the discontinuities, if any, of the following function.
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Example 3: Classify the discontinuities, if any, of the following function.
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Example 4: Classify the discontinuities, if any, of the following function.
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Example 5: Classify the discontinuities, if any, of the following function.
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L. Classify the discontinuities, if any, of the following function.
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2. Classify the discontinuities, if any, of the following function.
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