MA 16010 Lesson 5

The Derivative

Tangent Lines

The tangent line to a function f(x) at a point ¢ is a line that touches the graph of f(z) at
the point (c, f(c)). Note, this means that the point (c, f(c)) is always on the tangent line.

'Tf‘#\%c.f\\" ine. 10 A;Cx)
& Yoo Qont K.

i
7

We can think of this as taking the slope of the graph at the point (z, f(z)) and extending it
into a line with the same slope.
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Slope of the Tangent Line to f(x) at z = Slope of the graph of f(z) at the point (z, f(z)).

Tangent Lines as Limits of Secant Lines

A secant line is a line that passes through the graph of f(z) in two points.
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What happens to points x + Ay, T + he, and x + h3 as the secant lines approach the tangent
line?
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Finding the Slope of the Tangent Line Using Slopes of Secant Lines

LoNyen¥

\w e

&
Be N A

T4 k)

S % Yah

{Z What is the slope of the secant line in the picture above?
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Take the limit as h — 0 to get the slopel(,)} the tangent line in the picture above.
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The Derivative
We define the derivative of a function f(z) at the point z to be the slope of the tangent line

at any point z.
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Other Notation: If y = f(z), then 3 = f’(:L) 2 Ef(z).

Geometric Interpretation: The slope of the tangent line to f(z) at the point z = ¢ is equal
to the derivative of f at the point ¢ (f' (¢) = slope of the tangent line at c).
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Example 1: Given f(z) = 322 + 1, use the limit of the difference quotient to find f'(z).
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Example 2: Find the equation of the tangent line to the graph of f(z) = 3z*+1 at the point
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Example 3: The derivative of a function g(z) is found by computing
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1. Find the slope of the tangent line to the graph of f(z) = 3% at the point z = c.
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