Instantaneous Rates of Change

Recall that the slope of the secant line to $f(x)$ at the points x and $x+h$ is

$$
\frac{f(x+h)-f(x)}{h} .
$$

This is the average rate of change of the function f over the interval $[x, x+h]$.
Taking the limit as $h \rightarrow 0$ gives the (instantaneous) rate of change at the point x.

$$
\begin{aligned}
\text { (Instantaneous) rate of change } & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =f^{\prime}(x) \\
& =\text { the derivative of } f \text { at } x
\end{aligned}
$$

Example 1: The population of a culture of bacteria is given by $P(t)=7 t^{2}+4 t+1500$.
(a) Find the equation for the rate of change of the population after t hours.
(b) What is the rate of change after 4 hours?

Velocity

The rate of change of position is velocity. If $s(t)$ is a function giving the position of an object at time t, then the velocity of that object at time t is $v(t)=s^{\prime}(t)$.

Example 2: The height of a ball t seconds after being thrown into the air is given by $\overline{s(t)}=-16 t^{2}+51 t$.
(a) Find the velocity function $(v(t))$.
(b) What is the velocity of the ball when $t=2$?

DIY

1. If a rock is thrown upward on Mars, its height (in meters) after t seconds is given by $s(t)=16 t-1.86 t^{2}$. At what time is the velocity of the rock equal to $-2.6 \mathrm{~m} / \mathrm{s}$?
2. Find the rate of change of the volume of a cube with respect to the length s of a side. What is the rate of change of the volume when $s=4$?
3. The population of a pride of lions over time (in years) is given by $P(t)=150\left(1+0.5 t+0.08 t^{2}\right)$. What is the growth rate (in lions per year) when $t=5$ years?
