The Quotient Rule

$$
\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{(g(x))^{2}}
$$

If we need to take the derivative of two functions being divided, we cannot simply divide the derivative of the numerator by the derivative of the denominator;

$$
\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right] \neq \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

Example 1: Compute the derivative of the following function.

$$
y=\frac{\sin (x)+x}{2 x+1}
$$

Example 2: Compute the derivative of the following function.

$$
y=\frac{a e^{x}}{\left(a^{2}+\sqrt{x}\right)}, \text { where } a \text { is a constant }
$$

Derivatives of Other Trigonometric Functions

- $\frac{d}{d x} \tan (x)=\sec ^{2}(x)$
- $\frac{d}{d x} \sec (x)=\sec (x) \tan (x)$
- $\frac{d}{d x} \cot (x)=-\csc ^{2}(x)$
- $\frac{d}{d x} \csc (x)=-\csc (x) \cot (x)$

Example 3: Find the derivative of the function $y=5 \cos (x) \cot (x)$.

DIY

1. Find the derivative of the following function at $t=7$.

$$
y=\frac{2+e^{t}}{3-e^{t}}
$$

2. Find the equation of the tangent line to the graph of $y=3 e^{x} \sec (x)$ at $x=0$.
3. Find the derivative of the following function.

$$
y=\frac{\cos (x)}{\cot (x)+\sec (x)}
$$

