Simplify your final answer. Show all relevant work for each problem. Little to no work, even with a correct answer, will receive little to no credit.

- 1. If $\int_{-3}^{10} h(x) dx = 25$ and $\int_{2}^{10} h(x) dx = 29$, find $\int_{-3}^{2} h(x) dx$. $\int_{-3}^{10} h(x) dx = \int_{-3}^{2} h(x) dx + \int_{2}^{10} h(x) dx$ $25 = \int_{-3}^{2} h(x) dx + 24 \Rightarrow -4 = \int_{-3}^{2} h(x) dx$
- 2. The velocity function, in meters per minute, of a particle moving along a straight line is v(t) = 10t 2, where t is time in minutes. Find the displacement of the particle from t = 3 minutes to t = 6 minutes. S(t) = ρ 051+100 function

Displacement =
$$S(4) - S(3)$$

= $\int_{3}^{6} (10t-2) dt$
= $(5t^{2}-2t)|_{3}^{6}$
= $(5(36)-12)-(5(4)-6)$
= $168-39$ = 129 Meters

3. Use the Trapezoidal Rule to approximate $\int_0^9 x^2 dx$ using n = 3 trapezoids.

$$f(x) = x^{2} \quad a = 0 \quad b = 9 \quad n = 3 \quad \Delta x = \frac{9 - 0}{3} = 3$$

$$X_{0} = 0 \quad X_{1} = 3 \quad X_{2} = 6 \quad X_{3} = 9$$

$$T_{3} = (\frac{1}{2})(3)(f(0) + 2f(3) + 2f(6) + f(9))$$

$$= (\frac{1}{2})(3)(0 + 2(9) + 2(36) + 81)$$

$$= (\frac{1}{2})(3)(0 + 18 + 72 + 81)$$

$$= \frac{513}{7} = 256.5$$