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1. Introduction

In this paper we study the fibers of a rational map from an algebraic point of view.
We begin by describing four ideals related to such a fiber.

Let S = k[x0, . . . , xn] be a polynomial ring over an infinite field k with homoge-
neous maximal ideal m, let I ⊂ S be an ideal generated by an (r+1)-dimensional
vector space W of forms of the same degree, and let φ be the associated rational
map P n→ P r = P(W ). We will use this notation throughout. Since we are inter-
ested in the rational map, we may remove common divisors of W and thus assume
that I has codimension ≥ 2.

A k-rational point q in the target P r = P(W ) is by definition a codimension 1
subspace Wq of W. We write Iq ⊂ S for the ideal generated by Wq. By a homoge-
neous presentation of I we will always mean a homogeneous free presentation of
I with respect to a homogeneous minimal generating set. If F → G = S ⊗W is
such a presentation, then the composition F → G → S ⊗ (W/Wq) is called the
generalized row corresponding to q, and its image is called the generalized row
ideal corresponding to q. It is the ideal generated by the entries of a row in the ho-
mogeneous presentation matrix after a change of basis. From this we see that the
generalized row ideal corresponding to q is simply Iq : I.

The rational map φ is a morphism away from the algebraic set V(I ), and we
may form the fiber (= preimage) of the morphism over a point q ∈ P r. The satu-
rated ideal of the scheme-theoretic closure of this fiber is Iq : I∞, which we call
the morphism fiber ideal associated to q.

The rational map φ gives rise to a correspondence � ⊂ P n × P r, which is the
closure of the graph of the morphism induced by φ. There are projections

P n π1←− �
π2−→ P r,

and we define the correspondence fiber over q to be π1(π
−1
2 (q)). Since � is

BiProj(R), where R is the Rees algebra S [It] ⊂ S [t] of I, it follows that the cor-
respondence fiber is defined by the ideal
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(Iq tR : (It)∞) ∩ S =
⋃
i

(IqI
i−1 : I i).

This ideal describes the locus where I is not integral over Iq . It is clear that our
four ideals are contained, each in the next, as follows:

Iq ⊂ Iq : I (row ideal);

⊂
⋃
i

(IqI
i−1 : I i) (correspondence fiber ideal);

⊂ Iq : I∞ (morphism fiber ideal).

In Section 2 we compare the row ideals, morphism fiber ideals, and correspon-
dence fiber ideals.

In Section 3 we use generalized row ideals to give bounds on the analytic spread
of I by interpreting the analytic spread as 1 plus the dimension of the image of φ.

Many interesting rational maps φ are associated as just described to ideals I
with linear presentation matrices (see e.g. [HKS]). Thus we are interested in lin-
early presented ideals and their powers, which arise in the study of the graph. It is
known that the powers of a linearly presented ideal need not be linearly presented.
The first such examples were exhibited by Sturmfels [St]; for a survey of what is
known, see [EHuU]. In Section 3 we also give criteria for birationality of the map
or its restriction to a linear subspace of P n.

In Section 4 we generalize the notion of linear presentation (of an ideal or mod-
ule) in various directions: A graded S-module M generated by finitely many ele-
ments of the same degree has linear generalized row ideals if the entries of every
generalized row of a homogeneous presentation matrix for M generate a linear
ideal (i.e., an ideal generated by linear forms). Obviously, any module with a
linear presentation has this property, and we conjecture that the two notions are
equivalent in the case of ideals. The corresponding conjecture is false for mod-
ules, but we prove it for modules of projective dimension 1. The main result of the
section implies a weak linearity property of powers; it states that if an ideal I has
linear generalized row ideals, then every power of I has a homogeneous presen-
tation all of whose (ordinary) rows generate linear ideals.

2. Comparing the Notions of Fiber Ideals

Recall that the row ideal for a point q is always contained in the correspondence
fiber ideal, which in turn is contained in the morphism fiber ideal. If the row ideal
is generated by linear forms (or, more generally, is prime) and does not contain I,
then these ideals are all equal. But in general the containments are both strict, as
the following example shows.

Example 2.1. Let

S = k[a, b, c, d ], J = (ab2, ac2, b2c, bc2), I = J + (bcd ).

One can check that I is linearly presented. Computation shows that the row ideal
J : I is (b, c) while the correspondence fiber ideal is (a2, b, c) and the morphism
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fiber ideal is the unit ideal J : I∞ = S. We have no example of an m-primary
ideal (regular morphism) where all three are different: in the examples we have
tried, the correspondence fiber is equal to the morphism fiber. (Of course, for any
regular map all three are equal up to saturation, but we do not see why any two
should be equal as ideals.)

Before stating the next result we recall that an ideal I in a Noetherian ring is said
to be of linear type if the natural map from the symmetric algebra of I onto the
Rees algebra of I is an isomorphism. If I is of linear type, then I cannot be in-
tegral over any strictly smaller ideal, as can be seen by applying [NR, Thm. 4,
p. 152] to the localizations of I. We say that an ideal is proper if it is not the unit
ideal.

Proposition 2.2. If I has linear generalized row ideals, then every proper mor-
phism fiber ideal is equal to the corresponding row ideal and hence is generated
by linear forms. If I is also of linear type on the punctured spectrum, then every
proper correspondence fiber ideal is equal to the corresponding row ideal.

Proof. Suppose that the morphism fiber ideal Iq : I∞ is not the unit ideal. In this
case Iq : I does not contain I. The required equality for the first statement is

Iq : I = Iq : I∞,

which follows because Iq : I is linear and thus prime.
Now suppose that I is of linear type on the punctured spectrum and that the cor-

respondence fiber ideal H := ⋃i(IqI
i−1 : I i) is proper. Set K = Iq : I, the row

ideal. We must show K = H. Since K ⊂ H we may safely assume that K is not
m, the homogeneous maximal ideal of S. By hypothesis, the row ideal K is gen-
erated by linear forms; hence it is prime. Since the localized ideals (Iq)K and IK
are not equal and since IK is of linear type, it follows that IK is not integral over
(Iq)K. Therefore, HK is a proper ideal. Thus H ⊂ K, as required.

Example 2.3. The last statement of Proposition 2.2 would be false without the
hypothesis that I is of linear type on the punctured spectrum. This is shown by
Example 2.1.

Example 2.4. Let Q be a quadratic form in x0, x1, x2, and let F be a cubic form
relatively prime toQ. The rational map defined by x0Q, x1Q, x2Q,F has one mor-
phism fiber (and correspondence fiber) ideal (Q), though for a general point in the
image both the morphism fiber ideal and the correspondence fiber ideal are lin-
ear. This example shows that in [Si, Thm. 4.1] the point p should be taken to be
general.

3. How to Compute the Analytic Spread
and Test Birationality

The notions of row ideals and fiber ideals provide tests for the birationality of the
map φ and lead to formulas for the analytic spread of the ideal I. In our setting, the
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analytic spread �(I ) of I can be defined as 1 plus the dimension of the image of
the rational map φ. Its ideal-theoretic significance is that it gives the smallest num-
ber of generators of a homogeneous ideal over which I is integral or, equivalently,
the smallest number of generators of an ideal in Sm over which Im is integral (see
[NR, Cor., p. 151]).

Proposition 3.1. (a) If q is a point in P r = P(W ) such that Iq : I∞ = S, then

�(I ) ≥ 1+ codim(Iq : I∞).

(b) If p is a general point in P n, then

�(I ) = 1+ codim(Iφ(p) : I∞).

(c) If there exits a point q such that the row ideal Iq : I is linear of codimension
n and does not contain I, then φ is birational onto its image. Moreover, φ is bi-
rational onto its image if and only if Iφ(p) : I∞ is a linear ideal of codimension n

for a general point p.

Proof. Set J = Iφ(p). If the ideal Iq : I∞ is proper, then it cannot be m-primary
and so defines a nonempty fiber of the morphism φ. On the other hand, J : I∞ is
the defining ideal of a general fiber of the map. Thus the dimension formula and
the semicontinuity of fiber dimension [E, Cor. 14.5, Thm. 14.8(a)] show that

codim(Iq : I∞) ≤ codim(J : I∞) = dim im(φ).

However, the latter dimension is �(I )− 1, proving parts (a) and (b).
The second assertion in (c) holds because the map is birational onto its image

if and only if the general fiber is a reduced rational point.
We reduce the first assertion of (c) to the second one. Assume that the row ideal

Iq : I is linear of codimension n and does not contain I. Since Iq : I is a prime
ideal not containing I, it follows that Iq : I∞ = Iq : I = S. Hence the morphism
fiber over q is not empty and there exists a point p ∈P n with q = φ(p).

Now let T0, . . . , Tr be variables over S and letA1 denote the linear part of a homo-
geneous presentation matrix of I. We can write (T0, . . . , Tr)∗A1 = (x0, . . . , xn)∗B
for some matrix B whose entries are linear forms in the variables Ti with constant
coefficients. The dimension of the space of linear forms in the row ideal corre-
sponding to any point φ(p) is the rank of B when the coordinates of φ(p) are
substituted for the Ti; it is therefore semicontinuous in p. Thus, for p general, the
dimension of the space of linear forms in the ideal Iφ(p) : I is at least n, and then
the same holds for J : I∞. Because this ideal defines a nonempty fiber, it is in-
deed linear of codimension n.

Sometimes one can read off a lower bound on the analytic spread even from a par-
tial matrix of syzygies. The following result is inspired by [HKS, Prop. 1.2].

Proposition 3.2. With notation as before, suppose that A is a matrix of homo-
geneous forms each of whose columns is a syzygy on the generators of I. Let Aq

be the ideal generated by the elements of the generalized row of A corresponding
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to a point q ∈P r. If there exists a prime ideal P ∈V(Aq) such that A⊗ κ(P ) has
rank r, then Iq : I∞ = S and

�(I ) ≥ 1+ codimAq.

Proof. Since Aq ⊂ Iq : I∞, Proposition 3.1(a) shows that the second claim fol-
lows from the first one. To prove the first assertion, Iq : I∞ = S, it suffices to
verify that (Iq : I∞)P = SP .

Since AP contains an r × r invertible submatrix and since these relations ex-
press each generator of IP in terms of the one corresponding to q, it follows thatAP

is a full presentation matrix of the ideal IP . Thus (Aq)P = (Iq : I )P . Further-
more, since IP is generated by one element and since I has codimension ≥ 2 by
our blanket assumption, it follows that IP = SP , whence (Aq)P = (Iq : I )P =
(Iq : I∞)P . On the other hand, P ∈V(Aq), so (Aq)P = SP and we are done.

As in [HKS, Prop. 1.2], this gives criteria for birationality as follows.

Corollary 3.3. As in Proposition 3.2, suppose that A ⊗ κ(P ) has rank r for
some prime ideal P ∈ V(Aq). The map φ is birational onto its image if Aq de-
fines a reduced rational point in P n. The map φ, restricted to a general P r ⊂ P n,
is birational (a Cremona transformation) if Aq defines a reduced linear space of
codimension r in P n.

Proof. Notice that Aq ⊂ Iq : I ⊂ Iq : I∞, where Iq : I∞ = S according to
Proposition 3.2. Thus, if Aq defines a reduced rational point in P n, then the row
ideal Iq : I is linear of codimension n and does not contain I. Hence φ is bira-
tional onto its image by Proposition 3.1(c).

The second assertion follows from the first one applied to the restriction of φ.

For other, related criteria for birationality see [Si].

4. Ideals with Linear Row Ideals and Their Powers

We begin this section by clarifying the relation between these properties of an
ideal or module: to have a linear presentation matrix, to have linear generalized
row ideals, and to have some homogeneous presentation matrix all of whose row
ideals are linear. Obviously, if a presention matrix is linear then all its general-
ized row ideals are linear. However, the converse does not hold, at least for the
presentation of modules with torsion. This can be seen by taking the matrix(

s t t 2

0 s 0

)
,

for instance. Even so, we have the following statement.

Proposition 4.1. IfM is a graded S-module of projective dimension 1 generated
by finitely many homogeneous elements of the same degree, and if M has linear
generalized row ideals, then M has a linear presentation.
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Proof. Reduce modulo n general linear forms and then use the fundamental the-
orem for modules over principal ideal domains.

If an ideal has linear generalized row ideals then obviously there is a presentation
matrix with only linear row ideals. Again, the two concepts are not equivalent, as
the next example shows.

Example 4.2. We consider the ideal I = (s4, s 3t, st 3, t 4) ⊂ S = C[s, t] corre-
sponding to the morphism whose image is the smooth rational quartic curve in P3.

A homogeneous presentation of this ideal is given by

S 2(−5)⊕ S(−6)

(
t 0 0
−s 0 t 2

0 t −s2

0 −s 0

)
−−−−−−−−−→ S 4(−4)

( s4 s 3t st 3 t 4 )−−−−−−−−→ S.

The row ideals of the second and third rows in this presentation are not linear.
However, a change of basis in S 4(−4), corresponding to a different choice of gen-
erators of I, makes them linear:

S 2(−5)⊕ S(−6)

(
t 0 0
0 s 0

s−t s−t s2−t 2

−s+it −is−t s2+t 2

)
−−−−−−−−−−−−−−→ S 4(−4)

( F0 ...F3 )−−−−−−→ S,

where

F0 = −s(s − t)(s2 + t 2 + (s + t)(s − it)),

F1 = −t(s − t)(s2 + t 2 + (s + t)(is + t)),

F2 = st(s2 + t 2),

F3 = −st(s2 − t 2).

Whereas powers of linearly presented ideals need not be linearly presented, the
next result implies that having a homogeneous presentation with linear general-
ized row ideals is a weak linearity property that is indeed preserved when taking
powers.

Theorem 4.3. If I has a homogeneous presentation matrix where at least one
row ideal is linear of codimension at least �(I ) − 1 and does not contain I, then
each power of I has some homogeneous presentation matrix all of whose row
ideals are linear of codimension �(I )− 1 and do not contain I.

Proof. According to Proposition 3.1(b) for general p ∈ P n, the morphism fiber
ideal Iφ(p) : I∞ has codimension �(I )−1; hence the row ideal Iφ(p) : I has codi-
mension at most �(I )−1. Now one sees, as in the proof of Proposition 3.1(c), that
Iφ(p) : I is linear of codimension �(I )− 1 and does not contain I.

Let E = V(I ) be the exceptional locus of φ. For each d ≥ 1, the rational map
φd defined by the vector space of formsW d is regular on P n \E. For any point p ∈
P n \E, the ideal of φ(p)∈P(W ) is generated by the vector space of linear forms
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Wφ(p), so the vector space of forms of degree d that it contains is Wφ(p)W
d−1.

Therefore, (W d)φd (p) = Wφ(p)W
d−1 and hence the row ideal corresponding to

φd(p) is Iφ(p)I d−1 : I d.
We now show that, for general p, the row ideal Iφ(p)I d−1 : I d is linear of codi-

mension �(I )− 1 and does not contain I. For trivial reasons we have

Iφ(p) : I ⊂ Iφ(p)I
d−1 : I d ⊂ Iφ(p)I

d−1 : I∞ ⊂ Iφ(p) : I∞.

By the proof ’s first paragraph, Iφ(p) : I is a linear ideal of codimension �(I )− 1
and does not contain I. Hence

Iφ(p) : I = Iφ(p) : I∞

and therefore
Iφ(p) : I = Iφ(p)I

d−1 : I d.

Let dimW d = N + 1. Because the image of φd is nondegenerate, N + 1 gen-
eral points of P n correspond to the N + 1 rows of a presentation matrix of I d, so
we are done.

Corollary 4.4. If I has linear presentation or even just linear generalized row
ideals, then every power of I has a homogeneous presentation matrix all of whose
row ideals are linear of codimension �(I )− 1.

Proof. According to Proposition 3.1(b), the homogeneous presentation matrix of
I has a row ideal Iq : I such that codim(Iq : I∞) = �(I ) − 1. In particular, Iq :
I∞ = S and so I is not contained in Iq : I. Because Iq : I is a linear ideal we con-
clude that Iq : I = Iq : I∞, which gives codim(Iq : I ) = �(I ) − 1. Now apply
Theorem 4.3.

Proposition 4.5. Every ideal has a homogeneous presentation all of whose row
ideals are of codimension ≤ �(I )− 1.

Proof. Take a homogeneous presentation whose rows correspond to the fibers
through points of P n not in the exceptional locus. The row ideals are contained in
the morphism fiber ideals, which by Proposition 3.1(a) have codimension at most
�(I )− 1.

5. Some Open Problems

We are most interested in answers to the following questions.

1. Can the homogeneous minimal presentation of an ideal I have linear general-
ized row ideals without actually being linear?

2. If φ is a regular map (i.e., if I is m-primary), then are the correspondence fiber
ideals equal to the morphism fiber ideals? More generally, when are the corre-
spondence fiber ideals saturated with respect to m?

3. Find lower bounds for the number of linear relations that I d could have in terms
of the number of linear relations on I. How close can one come to the known
examples?
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